Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(9): 3659-3668, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38669448

ABSTRACT

We show that accurate oscillator strengths can be obtained from adiabatic connection (AC) approaches based on the extended random phase approximation (ERPA) combined with multireference (complete active space, CAS) wave functions. The oscillator strengths calculated using the perturbation-corrected ERPA transition density matrices, proposed in this work, and the excitation energies calculated with recently introduced AC correlation energy methods, AC0 and AC0D, compete with accuracy in the perturbational CASPT2 approach and require less computational effort. AC0 and AC0D methods scale more favorably with the number of active orbitals than multiconfigurational perturbation approaches like CASPT2 and NEVPT2 thanks to their dependence on reduced density matrices up to the order of 2. Importantly, the newly developed approach for computing correlated transition dipole moments does not entail any additional costs, as all intermediate quantities become available when AC0 energies are being computed. We also test the performance of the recently proposed AC method corrected for the negative-transition contributions to the correlation energy, AC0D, for triplet excitation energies. Similarly, as for the singlet excitations, the correction improves the performance of the AC0 method, particularly for the low-lying excited states.

2.
Sci Rep ; 12(1): 16834, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207351

ABSTRACT

Diarylethenes (DAEs), promising photochromic molecular switches, undergo pericyclic reactions upon ultraviolet or visible light illumination. For this reason, most studies on DAEs employ UV-vis spectroscopies. However, also their infrared (IR) spectra are valuable, in particular, for understanding the vibrational dynamics which accompanies the relevant photoreactions. An accurate assignment of IR bands to molecular modes can be achieved through a comparison between experimental and computed theoretical spectra. Even though more sophisticated computational methods are available, the density functional theory (DFT) is usually employed for this task, because of its modest cost and versatility. Here, we have tested the ability of several DFT functionals to reproduce the wide-range, 400-3200 cm-1, IR spectra of open and closed isomers of four representative DAE molecules. We find that global and range-separated, corrected for anharmonicity by scaling factors, hybrid DFT functionals are able to reproduce the IR spectra of DAEs, however, instead of the popular B3LYP functional we propose the use of the dispersion-corrected PBE0 functional. The paper also proposes a semi-automatic method of band assignment.

3.
J Chem Theory Comput ; 18(6): 3497-3511, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35587598

ABSTRACT

We address the problem of intermolecular interaction energy calculations in molecular complexes with localized excitons. Our focus is on the correct representation of the dispersion energy. We derive an extended Casimir-Polder formula for direct computation of this contribution through second order in the intermolecular interaction operator V̂. An alternative formula, accurate to infinite order in V̂, is derived within the framework of the adiabatic connection (AC) theory. We also propose a new parametrization of the VV10 nonlocal correlation density functional, so that it corrects the CASSCF energy for the dispersion contribution and can be applied to excited-state complexes. A numerical investigation is carried out for benzene, pyridine, and peptide complexes with the local exciton corresponding to the lowest π-π* or n- π* states. The extended Casimir-Polder formula is implemented in the framework of multiconfigurational symmetry-adapted perturbation theory, SAPT(MC). A SAPT(MC) analysis shows that the creation of a localized exciton affects mostly the electrostatic component of the interaction energy of investigated complexes. Nevertheless, the changes in Pauli repulsion and dispersion energies cannot be neglected. We verify the performance of several perturbation- and AC-based methods. Best results are obtained with a range-separated variant of an approximate AC approach employing extended random phase approximation and CASSCF wave functions.


Subject(s)
Benzene , Quantum Theory , Benzene/chemistry , Static Electricity
4.
J Phys Chem A ; 126(7): 1312-1319, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35166552

ABSTRACT

The London dispersion interactions between systems undergoing bond breaking, twisting, or compression are not well studied due to the scarcity and the high computational cost of methods being able to describe both the dynamic correlation and the multireference character of the system. Recently developed methods based on the Generalized Valence Bond wave function, such as EERPA-GVB and SAPT(GVB) (SAPT = symmetry-adapted perturbation theory), allow one to accurately compute and analyze noncovalent interactions between multireference systems. Here, we augment this analysis by introducing a local indicator for dispersion interactions inspired by Mata and Wuttke's Dispersion Interaction Density [ J. Comput. Chem. 2017, 38, 15-23] applied on top of an EERPA-GVB computation. Using a few model systems, we show what insights into the nature and evolution of the dispersion interaction during bond breaking and twisting such an approach is able to offer. The new indicator can be used at a minimal cost additional to an EERPA-GVB computation and can be complemented by an energy decomposition employing the SAPT(GVB) method. We explain the physics behind the initial increase, followed by a decrease in the interaction of linear molecules upon bond stretching. Namely, the elongation of covalent bonds leads to the enhancement of attractive dispersion interactions. For even larger bond lengths, this effect is canceled by the increase of the repulsive exchange forces resulting in a suppression of the interaction and finally leading to repulsion between monomers.


Subject(s)
Quantum Theory
5.
J Chem Phys ; 154(16): 164102, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940850

ABSTRACT

The adiabatic connection (AC) theory offers an alternative to the perturbation theory methods for computing correlation energy in the multireference wavefunction framework. We show that the AC correlation energy formula can be expressed in terms of the density linear response function as a sum of components related to positive and negative parts of the transition energy spectrum. Consequently, generalization of the adiabatic connection fluctuation-dissipation theory to electronically excited states is obtained. The component of the linear response function related to the negative-transition energy enters the correlation energy expression with an opposite sign to that of the positive-transition part and is non-negligible in the description of excited states. To illustrate this, we analyze the approximate AC model in which the linear response function is obtained in the extended random phase approximation (ERPA). We demonstrate that AC can be successfully combined with the ERPA for excited states, provided that the negative-excitation component of the response function is rigorously accounted for. The resulting AC0D model, an extension of the AC0 scheme introduced in our earlier works, is applied to a benchmark set of singlet excitation energies of organic molecules. AC0D constitutes a significant improvement over AC0 by bringing the excitation energies of the lowest excited states to a satisfactory agreement with theoretical best estimates, which parallels or even exceeds the accuracy of the n-electron valence state perturbation theory method. For higher excitations, AC0D is less reliable due to the gradual deterioration of the underlying ERPA linear response.

6.
Phys Chem Chem Phys ; 22(10): 5408-5412, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32103208

ABSTRACT

Although photoreaction quantum yields of photoswitches determine their switching efficiency, the rates of those reactions are essential parameters because they can establish the eventual temporal resolution of the device using the switch. 1,2-Bis(3,5-dimethylthiophen-2-yl)hexafluorocyclopentene (DMT) features efficient photochromic reactions of both ring-opening and closure and a markedly short time constant of the ring-opening reaction. We have found that the latter is due to the fact that the electronic relaxation from the S1 state of the closed-ring isomer of DMT occurs through a single dissipation channel, leading to a conical intersection in which the DMT molecule possesses open-ring-like geometry.

7.
J Chem Phys ; 152(9): 094102, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-33480720

ABSTRACT

We propose a multiconfiguration density functional combining a short-range density functional approximation with a novel long-range correction for dynamic correlation effects. The correction is derived from the adiabatic connection formalism so that the resulting functional requires access only to one- and two-electron reduced density matrices of the system. In practice, the functional is formulated for wavefunctions of the complete active space (CAS) type and the short-range density functional part is made dependent on the on-top pair density via auxiliary spin densities. The latter allows for reducing the self-interaction and the static correlation errors without breaking the spin symmetry. We study the properties and the performance of the non-self-consistent variant of the method, termed lrAC0-postCAS. Numerical demonstration on a set of dissociation energy curves and excitation energies shows that lrAC0-postCAS provides accuracy comparable with more computationally expensive ab initio rivals.

8.
J Phys Chem Lett ; 10(16): 4668-4674, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31356083

ABSTRACT

The recently proposed approach to multireference dynamic correlation energy based on the adiabatic connection (AC) is extended to an arbitrary spin symmetry of the reference state. We show that both the spin-free AC approach and its computationally inexpensive approximation, AC0, when combined with a complete active space wave function, constitute viable alternatives to the perturbation-based and density-functional-based multiconfiguration methods. In particular, the AC0 approach, thanks to its favorable scaling with the system size and the size of the active space, allows for treating larger systems than its perturbation-based counterparts while maintaining comparable accuracy. We show the method's robustness on illustrative chemical systems, including the elusive tetramethyleneethane (TME) diradical, potential energy surfaces of which present a challenge to most computational approaches. For the latter system, AC0 outperforms other methods, staying in close agreement with the full configuration interaction quantum Monte Carlo benchmark. A careful analysis of the contributions to the correlation energy of TME's lowest singlet and triplet states reveals the subtle interplay of the dynamic and static correlation as the key to understanding the shape of the diradical's potential energy surfaces.

9.
J Chem Theory Comput ; 15(8): 4430-4439, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31287698

ABSTRACT

We present an electron-pairs-based method employing a generalized valence bond perfect-pairing (GVB-PP) ansatz that provides a uniformly accurate description of systems where various types of electron correlation play a role and the GVB-PP wave function is a suitable reference. In the proposed EERPA-GVB approach, a GVB-PP energy is amended by adding correlation among electron pairs. The latter is achieved by embedding single pairs or couples of pairs in the environment of the other electron fragments and separately accounting for intra- and interfragment correlation effects. For this purpose, we employ truncated extended random phase approximation equations. Application of EERPA-GVB to systems governed by both short-range (energy barriers) and long-range (molecular interactions) correlation effects proves the good accuracy of the method. Moreover, EERPA-GVB is shown to cure a notorious problem of uncorrelated electron-pair models, namely, spatial symmetry breaking in aromatic molecules, using the example of benzene. We have also successfully applied EERPA-GVB to a challenging problem of a phase transition of the boron chain system, where the correlation changes its character along the reaction path. The accuracy and versatility of EERPA-GVB are accompanied by its attractively low computational cost. By truncation of the extended RPA equations and consideration of only at most two-fragment correlation contributions, the cost of computing the EERPA correlation energy is reduced to scale only quadratically with the number of pairs of electrons.

10.
Phys Chem Chem Phys ; 21(1): 192-204, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30516769

ABSTRACT

A diarylethene derivative, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene (DMP), is a photoswitch molecule utilizing a reversible aromatic ring-opening reaction. The quantum yield of the ring-opening reaction is however remarkably low. We investigate the origin of this behaviour by means of ultrafast transient absorption spectroscopy utilizing sub-10 fs pulses, which is an invaluable tool for simultaneously studying both the electronic and the vibrational molecular dynamics. Namely, a noncollinear optical parametric amplifier (NOPA) generating sub-10 fs pulses in the spectral range 605-750 nm is employed. The transient absorption signal is modulated by several vibrational modes, which are compared with experimental and computational Raman spectra and then assigned to the ground or excited electronic state. We observe that the most pronounced vibrational mode - the ethylenic stretching mode at a frequency of 1501 cm-1 - exhibits instantaneous frequency and amplitude modulation. The observed modulations occur due to weak coupling with another 1431 cm-1 stretching mode mediated by a vibrational mode of low frequency, i.e. around 60 cm-1. Fast internal conversion S1 → S0 originates in a relaxation through a conical intersection (found by density-functional theory computations), facilitated by the two aforementioned stretching modes.

11.
J Phys Chem Lett ; 9(18): 5534-5538, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30192553

ABSTRACT

It is demonstrated how the recently proposed multireference adiabatic-connection (AC) approximation for electron correlation energy ( Pernal , K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions . Phys. Rev. Lett. 2018 , 120 , 013001 ) can be extended to predicting correlation energy in excited states of molecules. It is the first successful application of the AC approach to computing excited-states energies of molecules using a complete active space (CAS) wave function as a reference. The unique feature of the AC-CAS approach with respect to popular methods such as CASPT2 and NEVPT2 is that it requires only one- and two-particle reduced density matrices, making it possible to efficiently treat large spaces of active electrons. Application of the simpler variant of AC, the AC0, which is based on the first-order expansion of the AC integrand at the uncorrelated system limit, to excited states yields excitation energies with accuracy rivaling that of the NEVPT2 method but at greatly reduced computational cost.

12.
J Chem Theory Comput ; 14(7): 3493-3503, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29787257

ABSTRACT

Recently, the adiabatic connection (AC) formula for the electron correlation energy has been proposed for a broad class of multireference wave functions (Pernal, K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 013001). We show that the AC formula used together with the extended random phase approximation (ERPA) can be efficiently applied to complete active space (CAS) wave functions to recover the remaining electron correlation. Unlike most of the perturbation theory approaches, the proposed AC-CAS method does not require construction of higher than two-electron reduced density matrices, which offers an immediate computational saving. In addition, we show that typically the AC-CAS systematically reduces the errors of both the absolute value of energy and of the energy differences (energy barrier) upon enlarging active spaces for electrons and orbitals. AC-CAS consistently gains in accuracy from including more active electrons. We also propose and study that the performance of the AC0 approach resulting from the first-order expansion of the AC integrand at the coupling constant equal to 0. AC0 avoids solving the full ERPA eigenequation, replacing it with small-dimension eigenproblems, while retaining good accuracy of the AC-CAS method. Low computational cost, compared to AC-CAS or perturbational approaches, makes AC0 the most efficient ab initio approach to capturing electron correlation for the CAS wave functions.

13.
J Chem Theory Comput ; 13(11): 5404-5419, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-28921975

ABSTRACT

Noncovalent interactions between molecules with stretched intramonomer covalent bonds are a fascinating, yet little studied area. This shortage of information stems largely from the inability of most of the commonly used computational quantum chemistry methods to accurately describe weak long-range and strong nondynamic correlations at the same time. In this work, we propose a geminal-based approach, abbreviated as EERPA-GVB, capable of describing such systems in a robust manner using relatively inexpensive computational steps. By examining a few van der Waals complexes, we demonstrate that the elongation of one or more intramolecular covalent bonds leads to an enhanced attraction between the monomers. We show that this increase in attraction occurs as the electron density characterizing intramolecular covalent bonds depletes and migrates toward the region between the monomers. As the covalent intramonomer bonds continue to stretch, the intermolecular interaction potential passes through a minimum and eventually goes up. The findings resulting from our EERPA-GVB calculations are supported and further elucidated by the symmetry-adapted perturbation theory and coupled-cluster (CC) computations using methods that are as sophisticated as the CC approach with a full treatment of singly, doubly, and triply excited clusters.

14.
J Chem Phys ; 146(12): 120901, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388098

ABSTRACT

Today's quantum chemistry methods are extremely powerful but rely upon complex quantities such as the massively multidimensional wavefunction or even the simpler electron density. Consequently, chemical insight and a chemist's intuition are often lost in this complexity leaving the results obtained difficult to rationalize. To handle this overabundance of information, computational chemists have developed tools and methodologies that assist in composing a more intuitive picture that permits better understanding of the intricacies of chemical behavior. In particular, the fundamental comprehension of phenomena governed by non-covalent interactions is not easily achieved in terms of either the total wavefunction or the total electron density, but can be accomplished using more informative quantities. This perspective provides an overview of these tools and methods that have been specifically developed or used to analyze, identify, quantify, and visualize non-covalent interactions. These include the quantitative energy decomposition analysis schemes and the more qualitative class of approaches such as the Non-covalent Interaction index, the Density Overlap Region Indicator, or quantum theory of atoms in molecules. Aside from the enhanced knowledge gained from these schemes, their strengths, limitations, as well as a roadmap for expanding their capabilities are emphasized.

15.
J Chem Phys ; 144(24): 244111, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27369501

ABSTRACT

A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples of systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.

16.
J Chem Phys ; 143(22): 224107, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26671358

ABSTRACT

We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341-363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π - π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

17.
Phys Chem Chem Phys ; 17(14): 8622-6, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25761196

ABSTRACT

Most computational chemistry methods cannot provide a uniformly accurate description of dynamic and static electron correlation. In this paper we present the performance of the ERPA-APSG method based on the antisymmetrized product of strongly orthogonal geminal theory (APSG) and the recently proposed extended random phase approximation (ERPA) intergeminal correlation correction. We show that the ERPA-APSG approach is capable of accounting for both dynamic and static correlation, yielding excellent results when applied to describing conformational changes in molecules, twisting of the ethylene molecule, and deprotonation reactions.

18.
J Chem Phys ; 140(18): 18A514, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24832322

ABSTRACT

Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introduced by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF--ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.

SELECTION OF CITATIONS
SEARCH DETAIL
...