Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 13(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36983660

ABSTRACT

BACKGROUND: Benign renal tumors, such as renal oncocytoma (RO), can be erroneously diagnosed as malignant renal cell carcinomas (RCC), because of their similar imaging features. Computer-aided systems leveraging radiomic features can be used to better discriminate benign renal tumors from the malignant ones. The purpose of this work was to build a machine learning model to distinguish RO from clear cell RCC (ccRCC). METHOD: We collected CT images of 77 patients, with 30 cases of RO (39%) and 47 cases of ccRCC (61%). Radiomic features were extracted both from the tumor volumes identified by the clinicians and from the tumor's zone of transition (ZOT). We used a genetic algorithm to perform feature selection, identifying the most descriptive set of features for the tumor classification. We built a decision tree classifier to distinguish between ROs and ccRCCs. We proposed two versions of the pipeline: in the first one, the feature selection was performed before the splitting of the data, while in the second one, the feature selection was performed after, i.e., on the training data only. We evaluated the efficiency of the two pipelines in cancer classification. RESULTS: The ZOT features were found to be the most predictive by the genetic algorithm. The pipeline with the feature selection performed on the whole dataset obtained an average ROC AUC score of 0.87 ± 0.09. The second pipeline, in which the feature selection was performed on the training data only, obtained an average ROC AUC score of 0.62 ± 0.17. CONCLUSIONS: The obtained results confirm the efficiency of ZOT radiomic features in capturing the renal tumor characteristics. We showed that there is a significant difference in the performances of the two proposed pipelines, highlighting how some already published radiomic analyses could be too optimistic about the real generalization capabilities of the models.

2.
Diagnostics (Basel) ; 12(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35453882

ABSTRACT

Background: To evaluate the segmental distribution of hepatocellular carcinoma (HCC) according to Couinaud's anatomical division in cirrhotic patients. Methods: Between 2020 and 2021, a total of 322 HCC nodules were diagnosed in 217 cirrhotic patients who underwent computed tomography (CT) or magnetic resonance imaging (MRI) for the evaluation of suspicious nodules (>1 cm) detected during ultrasound surveillance. For each patient, the segmental position of the HCC nodule was recorded according to Couinaud's description. The clinical data and nodule characteristics were collected. Results: A total of 234 (72.7%) HCC nodules were situated in the right lobe whereas 79 (24.5%) were detected in the left lobe (p < 0.0001) and only 9 nodules were in the caudate lobe (2.8%). HCC was most common in segment 8 (n = 88, 27.4%) and least common in segment 1 (n = 9, 2.8%). No significant differences were found in the frequencies of segmental or lobar involvement considering patient demographic and clinical characteristics, nodule dimension, or disease appearance. Conclusions: The intrahepatic distribution of HCC differs among Couinaud's segments, with segment 8 being the most common location and segment 1 being the least common. The segmental distribution of tumour location was similar to the normal liver volume distribution, supporting a possible correlation between HCC location and the volume of hepatic segments and/or the volumetric distribution of the portal blood flow.

3.
Front Psychol ; 12: 710982, 2021.
Article in English | MEDLINE | ID: mdl-34650476

ABSTRACT

Artificial intelligence (AI) has seen dramatic growth over the past decade, evolving from a niche super specialty computer application into a powerful tool which has revolutionized many areas of our professional and daily lives, and the potential of which seems to be still largely untapped. The field of medicine and medical imaging, as one of its various specialties, has gained considerable benefit from AI, including improved diagnostic accuracy and the possibility of predicting individual patient outcomes and options of more personalized treatment. It should be noted that this process can actively support the ongoing development of advanced, highly specific treatment strategies (e.g., target therapies for cancer patients) while enabling faster workflow and more efficient use of healthcare resources. The potential advantages of AI over conventional methods have made it attractive for physicians and other healthcare stakeholders, raising much interest in both the research and the industry communities. However, the fast development of AI has unveiled its potential for disrupting the work of healthcare professionals, spawning concerns among radiologists that, in the future, AI may outperform them, thus damaging their reputations or putting their jobs at risk. Furthermore, this development has raised relevant psychological, ethical, and medico-legal issues which need to be addressed for AI to be considered fully capable of patient management. The aim of this review is to provide a brief, hopefully exhaustive, overview of the state of the art of AI systems regarding medical imaging, with a special focus on how AI and the entire healthcare environment should be prepared to accomplish the goal of a more advanced human-centered world.

4.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916915

ABSTRACT

Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.


Subject(s)
Inflammation/complications , Inflammation/metabolism , Stomach Neoplasms/etiology , Stomach Neoplasms/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Biomarkers, Tumor , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Clinical Trials as Topic , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Humans , Inflammation/etiology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Molecular Targeted Therapy , Neoplasm Staging , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Treatment Outcome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
5.
Diagnostics (Basel) ; 11(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922483

ABSTRACT

While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management. The present study aimed to illustrate the contribution that current radiomics methods applied to magnetic resonance imaging can offer to managing patients with rectal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...