Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0282782, 2023.
Article in English | MEDLINE | ID: mdl-36893137

ABSTRACT

Global mitigation strategies to tackle the threat posed by SARS-CoV-2 have produced a significant decrease of the severity of 2020/21 seasonal influenza, which might result in a reduced population natural immunity for the upcoming 2021/22 influenza season. To predict the spread of influenza virus in Italy and the impact of prevention and control measures, we present an age-structured Susceptible-Exposed-Infectious-Removed (SEIR) model including the role of social mixing patterns and the impact of age-stratified vaccination strategies and Non-Pharmaceutical Interventions (NPIs) such as school closures, partial lockdown, as well as the adoption of personal protective equipment and the practice of hand hygiene. We find that vaccination campaigns with standard coverage would produce a remarkable mitigation of the spread of the disease in moderate influenza seasons, making the adoption of NPIs unnecessary. However, in case of severe seasonal epidemics, a standard vaccination coverage would not be sufficiently effective in fighting the epidemic, thus implying that a combination with the adoption of NPIs is necessary to contain the disease. Alternatively, our results show that the enhancement of the vaccination coverage would reduce the need to adopt NPIs, thus limiting the economic and social impacts that NPIs might produce. Our results highlight the need to respond to the influenza epidemic by strengthening the vaccination coverage.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Disease Outbreaks , Italy/epidemiology
2.
Front Hum Neurosci ; 16: 950434, 2022.
Article in English | MEDLINE | ID: mdl-36158622

ABSTRACT

Implanting deep brain stimulation (DBS) electrodes in patients with Parkinson's disease often results in the appearance of a non-infectious, delayed-onset edema that disappears over time. However, the time window between the DBS electrode and DBS stimulating device implant is often used to record local field potentials (LFPs) which are used both to better understand basal ganglia pathophysiology and to improve DBS therapy. In this work, we investigated whether the presence of post-surgery edema correlates with the quality of LFP recordings in eight patients with advanced Parkinson's disease implanted with subthalamic DBS electrodes. The magnetic resonance scans of the brain after 8.5 ± 1.5 days from the implantation surgery were segmented and the peri-electrode edema volume was calculated for both brain hemispheres. We found a correlation (ρ = -0.81, p < 0.0218, Spearman's correlation coefficient) between left side local field potentials of the low beta band (11-20 Hz) and the edema volume of the same side. No other significant differences between the hemispheres were found. Despite the limited sample size, our results suggest that the effect on LFPs may be related to the edema localization, thus indicating a mechanism involving brain networks instead of a simple change in the electrode-tissue interface.

3.
Sensors (Basel) ; 22(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35336267

ABSTRACT

This paper proposes a theoretical model for evaluating the capacity of a millimeter wave (mmWave) source destination link when the nodes are distributed according to a three-dimensional (3D) homogeneous Poisson point process. In the presented analysis, different from the existing approaches, the destination lies in an arbitrary location with respect to the source; thus, the link performance can be evaluated for a neighbor of any order. Moreover, the developed model relies on a realistic propagation environment, characterized by path loss attenuation and shadowing in line of sight (LoS), non-LoS, and outage link state conditions. The derived formulas, which are calculated in closed-form and validated by independent Monte Carlo simulations, are used to investigate the influence of the intensity parameter, of the antenna gain, and of the mmWave frequency band on the link capacity for any possible neighbor in a practical 3D scenario.

4.
Sensors (Basel) ; 21(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801730

ABSTRACT

This paper presents a complete overview of the recently developed Gaussian approach for the synthesis of both periodic and aperiodic linear antenna arrays in conjunction with an exhaustive numerical investigation of the achievable performance. The position and excitation synthesis problems are jointly modeled to enable a direct mutual comparison between the two strategies. To this aim, different parameter settings are selected to analyze the results in terms of achieved beamwidth and maximum sidelobe levels as a function of the array aperture and of the number of radiating elements. The insights inferred from this numerical investigation are exploited to derive a novel first-step procedure with the purpose of enabling an antenna engineer to quickly identify the most suitable design approach, thus reducing the time required for antenna system development.

SELECTION OF CITATIONS
SEARCH DETAIL
...