Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Lancet Planet Health ; 8(1): e30-e40, 2024 01.
Article in English | MEDLINE | ID: mdl-38199719

ABSTRACT

BACKGROUND: Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS: We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS: In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION: Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING: EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.


Subject(s)
Aedes , Arboviruses , Chikungunya Fever , Zika Virus Infection , Zika Virus , Humans , Animals , Chikungunya Fever/epidemiology , Europe/epidemiology , Zika Virus Infection/epidemiology
2.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985664

ABSTRACT

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Uncertainty
3.
medRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461674

ABSTRACT

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

4.
Proc Natl Acad Sci U S A ; 120(28): e2300590120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399393

ABSTRACT

When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pharmaceutical Preparations , Pandemics/prevention & control , Influenza Vaccines/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098064

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
6.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437905

ABSTRACT

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

7.
PLoS Negl Trop Dis ; 16(7): e0010565, 2022 07.
Article in English | MEDLINE | ID: mdl-35857744

ABSTRACT

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.


Subject(s)
Epidemics , Zika Virus Infection , Zika Virus , Animals , Colombia/epidemiology , Humans , Mosquito Vectors , Zika Virus Infection/epidemiology
8.
Osteoporos Int ; 33(11): 2397-2408, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904681

ABSTRACT

Children with sickle cell disease (SCD) have the potential for extensive and early-onset bone morbidity. This study reports on the diversity of bone morbidity seen in children with SCD followed at three tertiary centers. IV bisphosphonates were effective for bone pain analgesia and did not trigger sickle cell complications. INTRODUCTION: To evaluate bone morbidity and the response to intravenous (IV) bisphosphonate therapy in children with SCD. METHODS: We conducted a retrospective review of patient records from 2003 to 2019 at three Canadian pediatric tertiary care centers. Radiographs, magnetic resonance images, and computed tomography scans were reviewed for the presence of avascular necrosis (AVN), bone infarcts, and myositis. IV bisphosphonates were offered for bone pain management. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). RESULTS: Forty-six children (20 girls, 43%) had bone morbidity at a mean age of 11.8 years (SD 3.9) including AVN of the femoral (17/46, 37%) and humeral (8/46, 17%) heads, H-shaped vertebral body deformities due to endplate infarcts (35/46, 76%), and non-vertebral body skeletal infarcts (15/46, 32%). Five children (5/26, 19%) had myositis overlying areas of AVN or bone infarcts visualized on magnetic resonance imaging. Twenty-three children (8/23 girls) received IV bisphosphonate therapy. They all reported significant or complete resolution of bone pain. There were no reports of sickle cell hemolytic crises, pain crises, or stroke attributed to IV bisphosphonate therapy. CONCLUSION: Children with SCD have the potential for extensive and early-onset bone morbidity. In this series, IV bisphosphonates were effective for bone pain analgesia and did not trigger sickle cell complications.


Subject(s)
Anemia, Sickle Cell , Myositis , Osteonecrosis , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/pathology , Canada , Child , Diphosphonates/adverse effects , Female , Humans , Infarction/complications , Pain/drug therapy , Pain/etiology
9.
Proc Natl Acad Sci U S A ; 119(26): e2112182119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35696558

ABSTRACT

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.


Subject(s)
COVID-19 , Contact Tracing , SARS-CoV-2 , COVID-19/transmission , Humans , New York City/epidemiology , Pandemics , Population Dynamics , Time Factors , Washington/epidemiology
10.
Elife ; 112022 06 21.
Article in English | MEDLINE | ID: mdl-35726851

ABSTRACT

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , United States/epidemiology , Vaccination
11.
PLoS Comput Biol ; 18(5): e1010146, 2022 05.
Article in English | MEDLINE | ID: mdl-35613248

ABSTRACT

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454-42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564-6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs , Italy/epidemiology , SARS-CoV-2 , Vaccination
12.
medRxiv ; 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35313593

ABSTRACT

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-22271905

ABSTRACT

BackgroundSARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. MethodsNine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. FindingsAbsent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. ConclusionsResults from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

14.
Nat Med ; 28(5): 934-938, 2022 05.
Article in English | MEDLINE | ID: mdl-35210596

ABSTRACT

Given global Coronavirus Disease 2019 (COVID-19) vaccine shortages and inequity of vaccine distributions, fractionation of vaccine doses might be an effective strategy for reducing public health and economic burden, notwithstanding the emergence of new variants of concern. In this study, we developed a multi-scale model incorporating population-level transmission and individual-level vaccination to estimate the costs of hospitalization and vaccination and the economic benefits of reducing COVID-19 deaths due to dose-fractionation strategies in India. We used large-scale survey data of the willingness to pay together with data of vaccine and hospital admission costs to build the model. We found that fractional doses of vaccines could be an economically viable vaccination strategy compared to alternatives of either full-dose vaccination or no vaccination. Dose-sparing strategies could save a large number of lives, even with the emergence of new variants with higher transmissibility.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cost-Benefit Analysis , Humans , SARS-CoV-2 , Vaccination
15.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35072146

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-22268721

ABSTRACT

We develop a stochastic, multi-strain, compartmental epidemic model to estimate the relative transmissibility and immune escape of the Omicron variant of concern (VOC) in South Africa. The model integrates population, non-pharmaceutical interventions, vaccines, and epidemiological data and it is calibrated in the period May 1st, 2021 - November 23rd, 2021. We explore a parameter space of relative transmissibility with respect to the Delta variant and immune escape for Omicron by assuming an initial seeding, from unknown origin, in the first week of October 2021. We identify a region of the parameter space where combinations of relative transmissibility and immune escape are compatible with the growth of the epidemic wave. We also find that changes in the generation time associated with Omicron infections strongly affect the results concerning its relative transmissibility. The presented results are informed by current knowledge of Omicron and subject to changes.

17.
Preprint in English | medRxiv | ID: ppmedrxiv-21266820

ABSTRACT

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454 - 42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564 - 6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) reduction in the IFR. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.

18.
Nature ; 600(7887): 127-132, 2021 12.
Article in English | MEDLINE | ID: mdl-34695837

ABSTRACT

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemiological Models , SARS-CoV-2/isolation & purification , Air Travel/statistics & numerical data , COVID-19/mortality , COVID-19/virology , China/epidemiology , Disease Outbreaks/statistics & numerical data , Europe/epidemiology , Humans , Population Density , Time Factors , United States/epidemiology
19.
medRxiv ; 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34494030

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

20.
Preprint in English | medRxiv | ID: ppmedrxiv-21262748

ABSTRACT

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

SELECTION OF CITATIONS
SEARCH DETAIL
...