Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(29)2023 May 02.
Article in English | MEDLINE | ID: mdl-37059080

ABSTRACT

Graphene and other two-dimensional materials (2DMs) have been shown to be promising candidates for the development of flexible and highly-sensitive strain sensors. However, the successful implementation of 2DMs in practical applications is slowed down by complex processing and still low sensitivity. Here, we report on a novel development of strain sensors based on Marangoni self-assemblies of graphene and of its hybrids with other 2DMs that can both withstand very large deformation and exhibit highly sensitive piezoresistive behaviour. By exploiting the Marangoni effect, reference films of self-assembled reduced graphene oxide (RGO) are first optimized, and the electromechanical behaviour has been assessed after deposition onto different elastomers demonstrating the potential of producing strain sensors suitable for different fields of application. Hybrid networks have been then prepared by adding hexagonal boron nitride (hBN) and fluorinated graphene (FGr) to the RGO dispersion. The hybrid integration of 2D materials is demonstrated to become a potential solution to increase substantially the sensitivity of the produced resistive strain sensors without compromising the mechanical integrity of the film. In fact, for large quasi-static deformations, a range of gauge factor values up to 2000 were demonstrated, while retaining a stable performance under cyclic deformations.

2.
Membranes (Basel) ; 12(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35736318

ABSTRACT

Successful ways of fully exploiting the excellent structural and multifunctional performance of graphene and related materials are of great scientific and technological interest. New opportunities are provided by the fabrication of a novel class of nanocomposites with a nanolaminate architecture. In this work, by using the iterative lift-off/float-on process combined with wet depositions, we incorporated cm-size graphene monolayers produced via Chemical Vapour Deposition into a poly (methyl methacrylate) (PMMA) matrix with a controlled, alternate-layered structure. The produced nanolaminate shows a significant improvement in mechanical properties, with enhanced stiffness, strength and toughness, with the addition of only 0.06 vol% of graphene. Furthermore, oxygen and carbon dioxide permeability measurements performed at different relative humidity levels, reveal that the addition of graphene leads to significant reduction of permeability, compared to neat PMMA. Overall, we demonstrate that the produced graphene-PMMA nanolaminate surpasses, in terms of gas barrier properties, the traditional discontinuous graphene-particle composites with a similar filler content. Moreover, we found that the gas permeability through the nanocomposites departs from a monotonic decrease as a function of relative humidity, which is instead evident in the case of the pure PMMA nanolaminate. This work suggests the possible use of Chemical Vapour Deposition graphene-polymer nanolaminates as a flexible gas barrier, thus enlarging the spectrum of applications for this novel material.

3.
Materials (Basel) ; 14(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576456

ABSTRACT

In recent years, several studies have validated the use of piezoelectric materials for in situ biological stimulation, opening new interesting insights for bio-electric therapies. In this work, we investigate the morphological properties of polyvinylidene fluoride (PVDF) in the form of microstructured films after temperature-driven phase transition. The work aims to investigate the correlations between morphology at micrometric (i.e., spherulite size) and sub-micrometric (i.e., phase crystallinity) scale and in vitro cell response to validate their use as bio-functional interfaces for cellular studies. Morphological analyses (SEM, AFM) enabled evidence of the peculiar spherulite-like structure and the dependence of surface properties (i.e., intra-/interdomain roughness) upon process conditions (i.e., temperature). Meanwhile, chemical (i.e., FTIR) and thermal (i.e., DSC) analyses highlighted an influence of casting temperature and polymer solution on apolar to polar phases transition, thus affecting in vitro cell response. Accordingly, in vitro tests confirmed the relationship between micro/sub-microstructural properties and hMSC response in terms of adhesion and viability, thus suggesting a promising use of PVDF films to model, in perspective, in vitro functionalities of cells under electrical stimuli upon mechanical solicitation.

4.
Nat Commun ; 12(1): 4655, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34341360

ABSTRACT

The use of graphene in a form of discontinuous flakes in polymer composites limits the full exploitation of the unique properties of graphene, thus requiring high filler loadings for achieving- for example- satisfactory electrical and mechanical properties. Herein centimetre-scale CVD graphene/polymer nanolaminates have been produced by using an iterative 'lift-off/float-on' process and have been found to outperform, for the same graphene content, state-of-the-art flake-based graphene polymer composites in terms of mechanical reinforcement and electrical properties. Most importantly these thin laminate materials show a high electromagnetic interference (EMI) shielding effectiveness, reaching 60 dB for a small thickness of 33 µm, and an absolute EMI shielding effectiveness close to 3·105 dB cm2 g-1 which is amongst the highest values for synthetic, non-metallic materials produced to date.

5.
ACS Omega ; 6(12): 8308-8312, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817490

ABSTRACT

Poly(methyl methacrylate) (PMMA) is a glassy engineering polymer that finds extensive use in a number of applications. Over the past decade, thin films of PMMA were combined with graphene or other two-dimensional materials for applications in the area of nanotechnology. However, the effect of size upon the mechanical behavior of this thermoplastic polymer has not been fully examined. In this work, we adopted a homemade nanomechanical device to assess the yielding and fracture characteristics of freestanding, ultrathin (180-280 nm) PMMA films of a loaded area as large as 0.3 mm2. The measured values of Young's modulus and yield strength were found to be broadly similar to those measured in the bulk, but in contrast, all specimens exhibited a quite surprisingly high strain at failure (>20%). Detailed optical examination of the specimens during tensile loading showed clear evidence of craze development which however did not lead to premature fracture. This work may pave the way for the development of glassy thermoplastic films with high ductility at ambient temperatures.

6.
Nat Commun ; 10(1): 1572, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952849

ABSTRACT

Graphene is susceptible to morphological instabilities such as wrinkles and folds, which result from the imposition of thermo-mechanical stresses upon cooling from high temperatures and/ or under biaxial loading. A particular pattern encountered in CVD graphene is that of mosaic formation. Although it is understood that this pattern results from the severe biaxial compression upon cooling from high temperatures, it has not been possible to create such a complex pattern at room temperature by mechanical loading. Herein, we have managed by means of lateral wrinkling induced by tension and Euler buckling resulting from uniaxial compression upon unloading, to create such patterns in exfoliated graphene. We also show that these patterns can be used as channels for trapping or administering fluids at interstitial space between graphene and its support. This opens a whole dearth of new applications in the area of nano-fluidics but also in photo-electronics and sensor technologies.

7.
Nanoscale ; 11(3): 915-931, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30298899

ABSTRACT

3-Arm PMMAs end-functionalized by pyrene were designed as dispersing/stabilizing agents for the liquid-phase exfoliation of graphite in low-boiling point solvents like chloroform. The synthetic procedure comprised ARGET ATRP controlled polymerization, click chemistry and the quaternization reaction of triazole, ensuring tailor-made, well-defined pyrene-functional star PMMAs. Among a series of different pyrene-functional macromolecular topologies, the (PMMA-py2)3 proved the most efficient exfoliation agent giving relatively high graphene concentration (0.36 mg ml-1) at exceptionally low polymer/graphite mass ratio (mP/mGF = 0.003) and short sonication time (3 h). A 5-cycle iterative procedure relying on the redispersion of the sediment was developed yielding CG = 1.29 mg ml-1 with 14.8% exfoliation yield, under the favorable conditions of 10.5 h total shear mixing/tip sonication time and overall mP/mGF ratio as low as 0.15. In parallel, all-atom molecular dynamics simulations were conducted which helped understand the mechanism by which pyrene-functional macromolecular topologies act as efficient dispersing agents of graphene. Finally the G@(PMMA-Py)3 hybrids were well dispersed into the PMMA matrix by electrospinning to fabricate graphene-based nanocomposite fibrous veils. These graphene/polymer nanocomposites exhibited enhanced stiffness and strength by a factor of 4.4 with 1.5 wt% graphene hybrids as nanofillers.

8.
J Phys Chem B ; 120(34): 9115-31, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27454947

ABSTRACT

In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...