Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(34)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35688142

ABSTRACT

Heat transfer through a liquid-vapor interface is a complex phenomenon and crucially relevant in heat-removal and cryogenic applications. The physical coupling among confining walls, liquid and vapor phases is very important for controlling or improving cooling rates or condensation efficiency. Surface modification is a promising route, which has been explored to taylor the heat transfer through confined two-phase systems. We use coarse-grained molecular-dynamics simulations to study the heat transfer through a nano-confined liquid-vapor interface as a function of fluid filling. We set up a stationary heat flow through a liquid-vapor interface, stabilized with the liquid in contact with a colder wall and a vapor in contact with a hotter wall. For these physical conditions, we perform extensive simulations by progressively increasing the number of fluid particles, i.e. the channel filling, and measure the fluid distribution in the channel, density, pressure and temperature profiles We also compare the heat flux behavior between a bare-surfaces nano-channel and others where the hot surface was coated with end-grafted polymers, with different wetting affinities and bending properties. We take extreme cases of polymer properties to obtain a general picture of the polymer effect on the heat transfer, as compared with the bare surfaces. We find that walls covered by end-grafted solvophylic polymers change the heat flux by a factor of 6, as compared with bare walls, if the liquid phase is in contact with the polymers. Once the liquid wets the coated wall, the improve on heat flux is smaller and dominated by the grafting density. We also find that for a wall coated with stiff polymers, the jump in heat flux takes place at a significantly lower channel filling, when the polymers' free ends interact with the liquid surface. Interestingly, the morphology of the polymers induces a 'liquid bridge' between the liquid phase and the hot wall, through which heat is transported with high (liquid-like) thermal conductivity.

2.
J Chem Phys ; 151(13): 131101, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31594340

ABSTRACT

The well-known Wall theorem states a simple and precise relation among temperature, pressure, and density of a fluid at contact with a confining hard wall in thermodynamic equilibrium. In this Communication, we develop an extension of the Wall theorem to out-of-equilibrium conditions, providing an exact relation between pressure, density, and temperature at the wall, valid for strong nonequilibrium situations. We derive analytically this nonequilibrium Wall theorem for stationary states and validate it with nonequilibrium event-driven molecular-dynamics simulations. We compare the analytical expression with simulations by direct evaluation of temperature, density, and pressure on the wall of a nanoconfined liquid under stationary flow. This is done for linear regime, medium and very strong out-of-equilibrium conditions, presenting viscous heating and heat transport. The agreement between theory and simulation is excellent, allowing for a conclusive verification. In addition, we explore the degree of accuracy of using the equilibrium Wall theorem and different expressions for the local temperature, employed in nonequilibrium molecular-dynamics simulations.

3.
J Chem Phys ; 147(6): 064907, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28810758

ABSTRACT

We studied the behavior of long chain alkanes (LCAs) as they were transferred from gas to bulk water, through the liquid-vapor interface. These systems were studied using umbrella sampling molecular dynamics simulation and we have calculated properties like free energy profiles, molecular orientation, and radius of gyration of the LCA molecules. The results show changes in conformation of the solutes along the path. LCAs adopt pronounced molecular orientations and the larger ones extend appreciably when partially immersed in the interface. In bulk water, their conformations up to dodecane are mainly extended. However, larger alkanes like eicosane present a more stable collapsed conformation as they approach bulk water. We have characterized the more probable configurations in all interface and bulk regions. The results obtained are of interest for the study of biomatter processes requiring the transfer of hydrophobic matter, especially chain-like molecules like LCAs, from gas to bulk aqueous systems through the interface.

4.
J Phys Chem B ; 121(7): 1587-1600, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28139120

ABSTRACT

Line tension (γ) is a key parameter for the structure and dynamics of membrane domains. It was proposed that hybrid lipids, with mixed saturated and unsaturated acyl chains, participate in the relaxation of γ through different mechanisms. In this work, we used molecular dynamics simulations of the coarse-grained MARTINI model to measure γ in liquid-ordered-liquid-disordered (Lo-Ld) membranes, with increasingly larger relative proportion of the hybrid polyunsaturated lipid PAPC (4:0-5:4PC) to DAPC (di5:4PC) (i.e., XH). We also calculated an elastic contribution to γ by the Lo-Ld thickness mismatch, tilt moduli, and bending moduli, as predicted by theory. We found that an increase in XH decreased the overall γ value and the elastic contribution to line tension. The effect on the elastic line tension is driven by a reduced hydrophobic mismatch. Changes in the elastic constants of the phases due to an increase in XH produced a slightly larger elastic γ term. In addition to this elastic energy, other major contributions to γ are found in these model membranes. Increasing XH decreases both elastic and nonelastic contributions to γ. Finally, PAPC also behaves as a linactant, relaxing γ through an interfacial effect, as predicted by theoretical results. This study gives insight into the actual contribution of distinct energy terms to γ in bilayers containing polyunsaturated hybrid lipids.


Subject(s)
Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Phosphatidylcholines/chemistry , Cholesterol/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Temperature
5.
J Chem Phys ; 142(24): 244707, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26133449

ABSTRACT

We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.

SELECTION OF CITATIONS
SEARCH DETAIL
...