Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Chemosphere ; 363: 142888, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032731

ABSTRACT

Glyphosate is the most widely used systemic herbicide. There is ample scientific literature on the effects of this compound and its metabolite aminomethylphosphonic acid (AMPA), whereas their possible combined genotoxic action has not yet been studied. With the present study, we aimed to determine the level of genomic damage caused by glyphosate and AMPA in cultured human lymphocytes and to investigate the possible genotoxic action when both compounds were present at the same concentrations in the cultures. We used a micronuclei assay to test the genotoxicity of glyphosate and AMPA at six concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 µg/mL), which are more realistic than the highest concentrations used in previous published studies. Our data showed an increase in micronuclei frequency after treatment with both glyphosate and AMPA starting from 0.050 µg/mL up to 0.500 µg/mL. Similarly, a genomic damage was observed also in the cultures treated with the same concentrations of both compounds, except for exposure to 0.0065 and 0.0125 µg/mL. No synergistic action was observed. Finally, a significant increase in apoptotic cells was observed in cultures treated with the highest concentration of tested xenobiotics, while a significant increase in necrotic cells was observed also at the concentration of 0.250 µg/mL of both glyphosate and AMPA alone and in combination (0.125 + 0.125 µg/mL). Results of our study indicate that both glyphosate and its metabolite AMPA are able to cause genomic damage in human lymphocyte cultures, both alone and when present in equal concentrations.

2.
J Fish Dis ; : e13994, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953153

ABSTRACT

The aquaculture sector plays a vital role in global food security, yet it grapples with significant challenges posed by infectious diseases. Piscine lactococcosis is one of the significant threats in rainbow trout aquaculture due to its potential to cause severe economic losses through mortalities, reduced growth rates, and increased susceptibility to other pathogens. It poses challenges in disease management strategies, impacting the sustainability and profitability of rainbow trout farming. The current study focuses on the variations in serum blood parameters of farmed rainbow trout Oncorhynchus mykiss during a lactococcosis outbreak caused by Lactococcus garvieae. Blood samples were collected for biochemical analysis, fish were examined for parasites and bacteria, and DNA from bacterial colonies was PCR-amplified and sequenced for identification. Overall, 13 biochemical parameters, including proteins, enzymes, lipids, chemicals, and minerals, were measured in serum blood samples from both diseased and healthy fish. The results indicate significant alterations in the levels of these parameters during the outbreak, highlighting the impact of infections on the blood profile of farmed rainbow trout. Urea levels were significantly higher in diseased fish compared to controls, and creatinine, phosphorus, and magnesium also showed similar trends. Alanine aminotransferase and total protein levels were higher in control fish. Chloride levels differed significantly between groups. Iron levels were higher in controls and lower in diseased fish. No significant differences were found in other parameters. This study reveals significant changes in serum blood parameters of rainbow trout during a lactococcosis outbreak caused by L. garvieae. These changes highlight the potential of these parameters as tools for monitoring health status, stress, and aquaculture management. Continuous monitoring can provide valuable insights into disease severity and overall fish health, aiding in the development of improved management practices. The presented data contribute to understanding the pathophysiology of piscine lactococcosis and developing effective mitigation strategies for farmed rainbow trout.

3.
Environ Pollut ; : 124313, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838808

ABSTRACT

N-1,3-Dimethylbutyl-N'-phenyl-p-quinone diamine (6PPDQ) is a derivative of 6PPD, a synthetic antioxidant used in tire manufacturing to control the degradation caused by oxidation and heat aging. Its discovery in 2020 has raised important environmental concern, particularly regarding its association with acute mortality in coho salmon, prompting surge in research on its occurrence, fate, and transport in aquatic ecosystems. Despite this attention, there remain notable gaps in grasping the knowledge, demanding an in depth overview. Thus, this review consolidates recent studies to offer a thorough investigation of 6PPDQ's environmental dynamics, pathways into aquatic ecosystems, toxicity to aquatic organisms, and human health implications. Various aquatic species exhibit differential susceptibility to 6PPDQ toxicity, manifesting in acute mortalities, disruption of metabolic pathways, oxidative stress, behavioral responses, and developmental abnormalities. Whereas, understanding the species-specific responses, molecular mechanisms, and broader ecological implications requires further investigation across disciplines such as ecotoxicology, molecular biology, and environmental chemistry. Integration of findings emphasizes the complexity of 6PPDQ toxicity and its potential risks to human health. However, urgent priorities should be given to the measures like long-term monitoring studies to evaluate the chronic effects on aquatic ecosystems and the establishment of standardized toxicity testing protocols to ensure the result comparability and reproducibility. This review serves as a vital resource for researchers, policymakers, and environmental professionals seeking appraisals into the impacts of 6PPDQ contamination on aquatic ecosystems and human health.

4.
Toxics ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38922109

ABSTRACT

Microplastic pollution poses an escalating concern, particularly in coastal lagoons rich in biodiversity. This study delved into the occurrence of microplastics (MPs) in Magallana gigas (formerly Crassostrea gigas) from the Orbetello and Varano coastal lagoons (Italy), also investigating the response of these filter-feeding organisms to various colors (P = pink; B = blue; W = white) of high-density polyethylene (HDPE) MP fragments. Oysters were exposed for 7 days under controlled conditions. Subsequently, the oysters underwent analysis for both MP presence and biochemical markers of oxidative stress. Diverse ingestion rates of HDPE were noted among oysters from the two lagoons, eliciting antioxidant responses and modifying baseline activity. The two-way ANOVA revealed the significant effects of treatment (control; HDPE_B; HDPE_P; HDPE_W), site, and the interaction between treatment and site on all biomarkers. Non-metric multidimensional scaling showed a divergent effect of HDPE color on biomarkers. Further investigation is warranted to elucidate the mechanisms underlying the influence of MP color, dose-dependent effects, and the long-term impacts of exposure. Comprehending these intricacies is imperative for devising effective strategies to mitigate plastic pollution and safeguard marine health.

5.
Chemosphere ; 362: 142641, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906184

ABSTRACT

Increasing microplastic (MP) pollution, primarily from anthropogenic sources such as plastic film mulching, waste degradation, and agricultural practices, has emerged as a pressing global environmental concern. This review examines the direct and indirect effects of MPs on crops, both in isolation and in conjunction with other contaminants, to elucidate their combined toxicological impacts. Organic fertilizers predominantly contain 78.6% blue, 9.5% black, and 8.3% red MPs, while irrigation water in agroecosystems contains 66.2% white, 15.4% blue, and 8.1% black MPs, ranging from 0-1 mm to 4-5 mm in size. We elucidate five pivotal insights: Firstly, soil MPs exhibit affinity towards crop roots, seeds, and vascular systems, impeding water and nutrient uptake. Secondly, MPs induce oxidative stress in crops, disrupting vital metabolic processes. Thirdly, leachates from MPs elicit cytotoxic and genotoxic responses in crops. Fourthly, MPs disrupt soil biotic and abiotic dynamics, influencing water and nutrient availability for crops. Lastly, the cumulative effects of MPs and co-existing contaminants in agricultural soils detrimentally affect crop yield. Thus, we advocate agronomic interventions as practical remedies. These include biochar input, application of growth regulators, substitution of plastic mulch with crop residues, promotion of biological degradation, and encouragement of crop diversification. However, the efficacy of these measures varies based on MP type and dosage. As MP volumes increase, exploring alternative mitigation strategies such as bio-based plastics and environmentally friendly biotechnological solutions is imperative. Recognizing the persistence of plastics, policymakers should enact legislation favoring the mitigation and substitution of non-degradable materials with bio-derived or compostable alternatives. This review demonstrates the urgent need for collective efforts to alleviate MP pollution and emphasizes sustainable interventions for agricultural ecosystems.

6.
Sci Total Environ ; 932: 173115, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734082

ABSTRACT

Periphytic protozoa are esteemed icons of microbial fauna, renowned for their sensitivity and role as robust bioindicators, pivotal for assessing ecosystem stress and anthropogenic impacts on water quality. Despite their significance, research exploring the community dynamics of protozoan fauna across diverse water columns and depths in shallow waters has been notably lacking. This is the first study that examines the symphony of protozoan fauna in different water columns at varying depths (1, 2, 3.5 and 5 m), in South China Sea. Our findings reveal that vertical changes and environmental heterogeneity plays pivotal role in shaping the protozoan community structure, with distinct preferences observed in spirotrichea and phyllopharyngea classes at specific depths. Briefly, diversity metrics (i.e., both alpha and beta) showed significantly steady patterns at 2 m and 3.5 m depths as well as high homogeneity in most of the indices was observed. Co-associations between environmental parameters and protozoan communities demonstrated temperature, dissolved oxygen, salinity, and pH, are significant drivers discriminating species richness and evenness across all water columns. Noteworthy variations of the other environmental parameters such as SiO3-Si, PO4--P, and NO2--N at 1 m and NO3--N, and NH4+-N, at greater depths, signal the crucial role of nutrient dynamics in shaping the protozoan communities. Moreover, highly sensitive species like Anteholosticha pulchara, Apokeronopsis crassa, and Aspidisca steini in varying environmental conditions among vertical columns may serve as eco- indicators of water quality. Collectively, this study contributes a thorough comprehension of the fine-scale structure and dynamics of protozoan fauna within marine ecosystems, providing insightful perspectives for ecological and water quality assessment in ever-changing marine environments.


Subject(s)
Ecosystem , China , Biodiversity , Environmental Monitoring , Seawater , Aquatic Organisms
7.
J Hazard Mater ; 472: 134574, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38739959

ABSTRACT

The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.


Subject(s)
Aquatic Organisms , Microplastics , Transcriptome , Water Pollutants, Chemical , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Animals , Transcriptome/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry
8.
J Contam Hydrol ; 264: 104361, 2024 May.
Article in English | MEDLINE | ID: mdl-38735086

ABSTRACT

Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.


Subject(s)
Environmental Monitoring , Lakes , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Persistent Organic Pollutants , Polychlorinated Biphenyls/analysis , Geologic Sediments/chemistry , Switzerland , Altitude , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Italy
9.
Aquat Toxicol ; 271: 106940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728927

ABSTRACT

Aminomethylphosphonic acid (AMPA) is the main metabolite in the degradation of glyphosate, a broad-spectrum herbicide, and it is more toxic and persistent in the environment than the glyphosate itself. Owing to their extensive use, both chemicals pose a serious risk to aquatic ecosystems. Here, we explored the genotoxicological and physiological effects of glyphosate, AMPA, and the mixed solution in the proportion 1:1 in Lymnaea stagnalis, a freshwater gastropod snail. To do this, adult individuals were exposed to increasing nominal concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 µg/mL) in all three treatments once a week for four weeks. The genotoxicological effects were estimated as genomic damage, as defined by the number of micronuclei and nuclear buds observed in hemocytes, while the physiological effects were estimated as the effects on somatic growth and egg production. Exposure to glyphosate, AMPA, and the mixed solution caused genomic damage, as measured in increased frequency of micronuclei and nuclear buds and in adverse effects on somatic growth and egg production. Our findings suggest the need for more research into the harmful and synergistic effects of glyphosate and AMPA and of pesticides and their metabolites in general.


Subject(s)
Glycine , Glyphosate , Herbicides , Lymnaea , Organophosphonates , Water Pollutants, Chemical , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Lymnaea/drug effects , Lymnaea/genetics , Water Pollutants, Chemical/toxicity , Organophosphonates/toxicity , Herbicides/toxicity , Micronucleus Tests , DNA Damage/drug effects , Hemocytes/drug effects , Tetrazoles/toxicity
10.
Viruses ; 16(3)2024 03 18.
Article in English | MEDLINE | ID: mdl-38543830

ABSTRACT

Sturgeon farming is rapidly expanding in Europe, where Italy ranks first in farmed caviar production. A major threat to sturgeon health in captivity is infection with Acipenser European Iridovirus (AcIV-E), a viral disease definitively identified in 2016. Here we present data on the occurrence of AcIV-E in 482 sturgeons (age ≤ 12 months, species of the genus Acipenser and the species Huso huso) collected from sturgeon farms in northern Italy between January 2021 and December 2023. The health status of each specimen was determined by necroscopy and virological assay. Virological analysis was performed on gill samples and real-time PCR specific to the MCP gene of the iridovirus viral capsid. Molecular analysis revealed positivity to the virus in 204 samples (42.68% of the total), while anatomopathological examination of nearly all fish with positive real-time PCR disclosed swollen abdomen, hepatic steatosis, splenomegaly, and increased gill volume. Two challenges to timely diagnosis are the absence of pathognomonic symptoms and the inability to isolate the virus on cell monolayers. Continuous and widespread health monitoring is therefore crucial for disease management and to effectively control spread of the virus.


Subject(s)
Fish Diseases , Iridovirus , Virus Diseases , Animals , Fish Diseases/diagnosis , Fish Diseases/epidemiology , Fish Diseases/pathology , Italy/epidemiology , Europe , Fishes
11.
Environ Toxicol Pharmacol ; 106: 104360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176602

ABSTRACT

Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.


Subject(s)
Mitochondrial Diseases , Perches , Animals , Sodium Fluoride/toxicity , Fluorides/toxicity , Ecosystem , Liver
12.
Sci Total Environ ; 915: 169921, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38199379

ABSTRACT

In recent years, the advancement and greater magnitude of products, which led to the intensification in shrimp aquaculture is the result of utilization of modern tools and synchronization with other fields of science like microbiology and biotechnology. This intensification led to the elevation of disorders such as the development of several diseases and complications associated with biofouling. The use of antibiotics in aquaculture is discouraged due to their certain hazardous paraphernalia. Consequently, there has been a growing interest in exploring alternative strategies, with probiotics and prebiotics emerging as environmentally friendly substitutes for antibiotic treatments in shrimp aquaculture. This review highlighted the results of probiotics and prebiotics administration in the improvement of water quality, enhancement of growth and survival rates, stress resistance, health status and disease resistance, modulation of enteric microbiota and immunomodulation of different shrimp species. Additionally, the study sheds light on the comprehensive role of prebiotics and probiotics in elucidating the mechanistic framework, contributing to a deeper understanding of shrimp physiology and immunology. Besides their role in growth and development of shrimp aquaculture, the eco-friendly behavior of prebiotics and probiotics have made them ideal to control pollution in aquaculture systems. This comprehensive exploration of prebiotics and probiotics aims to address gaps in our understanding, including the economic aspects of shrimp aquaculture in terms of benefit-cost ratio, and areas worthy of further investigation by drawing insights from previous studies on different shrimp species. Ultimately, this commentary seeks to contribute to the evolving body of knowledge surrounding prebiotics and probiotics, offering valuable perspectives that extend beyond the ecological dimensions of shrimp aquaculture.


Subject(s)
Prebiotics , Probiotics , Animals , Consensus , Crustacea , Aquaculture/methods , Anti-Bacterial Agents
13.
J Contam Hydrol ; 259: 104257, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922724

ABSTRACT

Plastic waste and micro/nanoplastic particles pose a significant global environmental challenge, along with concerns surrounding certain pesticides' impact on aquatic organisms. This study investigated the effects of microplastic particles (MPPs) and cypermethrin (CYP) on crayfish, focusing on biochemical indices, lipid peroxidation, oxidative stress, hematological changes, and histopathological damage. After determining the LC50-96 h value (4.162 µg/L), crayfish were exposed to sub-lethal concentrations of CYP (1.00 ppb (20%) and 2.00 ppb (50%)) and fed a diet containing 100 mg/kg MPPs for 60 days. Hemolymph transfusion and histopathological examinations of the hepatopancreas were conducted. The results showed significant alterations in crayfish. Total protein levels decreased, indicating protein breakdown to counteract contaminants, while total cholesterol and triglyceride levels declined, suggesting impaired metabolism. Glucose levels increased in response to chemical stress. The decline in total antioxidant capacity highlighted the impact of prolonged xenobiotic exposure and oxidative stress, while increased CAT, SOD, and MDA activities helped mitigate oxidative stress and maintain cellular homeostasis. The elevated total hemocyte count, particularly in semi-granular cells, suggests their active involvement in the detoxification process. Further research is needed to fully understand the implications of these effects.


Subject(s)
Antioxidants , Astacoidea , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Astacoidea/metabolism , Microplastics/pharmacology , Plastics/pharmacology
14.
Environ Toxicol Pharmacol ; 104: 104324, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38000685

ABSTRACT

Microplastics (MPs) are acknowledged as emerging contaminants that pose a substantial threat to the environment. The adverse impacts of MP pollution extend across marine, freshwater, and terrestrial ecosystems, covering regions from the Tropics to the Poles. Although our comprehension of MP behavior has progressed in recent years, it is still difficult to predict exposure hotspots or exposure scenarios. Despite a noteworthy increase in data concerning MP occurrence in different environmental compartments and species, there is a noticeable scarcity of experimental data on MP uptake, accumulation, and effects. This Virtual Special Issue (VSI) received a total of 19 contributions from 11 countries, with a significant majority originating from Italy, India, Spain, and China. These contributions were categorized into three main themes: the occurrence and effects of MPs on aquatic and terrestrial organisms, the presence of chemical additives in plastics, and review articles summarizing previously published research on MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Plastics/toxicity , Ecosystem , Environmental Monitoring , Environmental Pollution , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
15.
Pathogens ; 12(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003830

ABSTRACT

Red mullet (Mullus barbatus) is a commercially relevant fish species, yet epidemiological data on anisakid nematode infestation in M. barbatus are scarce. To fill this gap, we report the occurrence of Anisakis larvae in red mullet in the Ligurian Sea (western Mediterranean). This survey was performed between 2018 and 2020 on fresh specimens of M. barbatus (n = 838) from two commercial fishing areas (Imperia, n = 190; Savona, n = 648) in the Ligurian Sea. Larvae morphologically identified as Anisakis spp. (n = 544) were characterized using PCR-RFLP as Anisakis pegreffii. The overall prevalence of A. pegreffii was 24.46%; the prevalence at each sampling site was 6.32% for Imperia and 29.78% for Savona. Furthermore, 3300 larvae of Hysterothylacium spp. were detected in the visceral organs of fish coinfected with A. pegreffii, showing that coinfection with two parasitic species is not rare. This study provides a timely update on the prevalence of ascaridoid nematodes in red mullet of the Ligurian Sea, an important commercial fishing area in the Mediterranean.

16.
Chemosphere ; 345: 140478, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865200

ABSTRACT

This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.


Subject(s)
Microplastics , Polyethylene , Animals , Microplastics/toxicity , Polyethylene/pharmacology , Plastics/toxicity , Astacoidea , Butyrylcholinesterase , Antioxidants/metabolism , Oxidative Stress , Glucose , Biomarkers
17.
Microorganisms ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894241

ABSTRACT

Lactococcus petauri is a recently described species of the genus Lactococcus. It was reported as an etiological agent of piscine lactococcosis together with Lactococcus garvieae. L. garvieae was already described as an opportunistic pathogen in human infections, with a potential zoonotic role. This paper represents the first report of a human urinary tract infection caused by L. petauri. A 91-year-old man was admitted to the emergency department for a femur fracture consequent to a domestic accident. The fracture was reduced by surgery and a catheterized specimen urine culture revealed a high bacterial load sustained by Gram-positive cocci, identified by Vitek 2 compact as L. garvieae, and subsequently as L. petauri through Internal Transcribed spacer 16S-23S r-RNA amplification. The number of L. petauri infections in humans is expected to rise in the near future mainly due to diagnostic improvement. A dedicated survey on L. garvieae and L. petauri infections in humans should be performed to better understand their role as pathogens and as zoonotic agents.

18.
Sci Total Environ ; 904: 166687, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659544

ABSTRACT

Marine periphytic ciliates play a pivotal role in shaping coastal ecosystems dynamics, thereby acting as robust biological indicators of aquatic ecosystem health and functionality. However, the understanding of the effects of veterinary antibiotics on composition and structure of periphytic ciliate communities remains limited. Therefore, this research investigates the influence of the veterinary antibiotic nitrofurazone on the community dynamics of marine periphytic ciliates through bioassay experiments conducted over a one-year cycle. Various concentrations of nitrofurazone were administered to the tested ciliate assemblages, and subsequent changes in community composition, abundance, and diversity were quantitatively analyzed. The research revealed significant alterations in periphytic ciliate communities following exposure to nitrofurazone. Concentration-dependent (0-8 mg L-1) decrease in ciliates abundance, accompanied by shifts in species composition, community structure, and community patterns were observed. Comprehensive assessment of diversity metrics indicated significant changes in species richness and evenness in the presence of nitrofurazone, potentially disrupting the stability of ciliate communities. Furthermore, nitrofurazone significantly influenced the community structure of ciliates in all seasons (winter: R2 = 0.489; spring: R2 = 0.666; summer: R2 = 0.700, autumn: R2 = 0.450), with high toxic potential in treatments 4 and 8 mg L-1. Differential abundances of ciliates varied across seasons and nitrofurazone treatments, some orders like Pleurostomatida were consistently affected, while others (i.e., Strombidida and Philasterida) showed irregular distributions or were evenly affected (e.g., Urostylida and Synhymeniida). Retrieved contrasting patterns between nitrofurazone and community responses underscore the broad response repertoire exhibited by ciliates to antibiotic exposure, suggesting potential cascading effects on associated ecological processes in the periphyton community. These findings significantly enhance the understanding of the ecological impacts of nitrofurazone on marine periphytic ciliate communities, emphasizing the imperative for vigilant monitoring and regulation of veterinary antibiotics to protect marine ecosystem health and biodiversity. Further research is required to explore the long-term effects of nitrofurazone exposure and evaluate potential strategies to reduce the ecological repercussions of antibiotics in aquatic environments, with a particular focus on nitrofurazone.


Subject(s)
Ciliophora , Ecosystem , Nitrofurazone/toxicity , Anti-Bacterial Agents/toxicity , Environmental Monitoring , Biodiversity
19.
Animals (Basel) ; 13(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627352

ABSTRACT

The agro-livestock sector produces about one third of global greenhouse gas (GHG) emissions. Since more energy is needed to meet the growing demand for food and the industrial revolution in agriculture, renewable energy sources could improve access to energy resources and energy security, reduce dependence on fossil fuels, and reduce GHG emissions. Hydrogen production is a promising energy technology, but its deployment in the global energy system is lagging. Here, we analyzed the theoretical and practical application of green hydrogen generated by electrolysis of water, powered by renewable energy sources, in the agro-livestock sector. Green hydrogen is at an early stage of development in most applications, and barriers to its large-scale deployment remain. Appropriate policies and financial incentives could make it a profitable technology for the future.

20.
Microorganisms ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512808

ABSTRACT

The gut microbiota has become a topic of increasing importance in various fields, including aquaculture. Several fish species have been the subject of investigations concerning the intestinal microbiota, which have compared different variables, including the intestinal portions, the environment, and diet. In this study, the microbiota of farmed and wild brook trout (Salvelinus fontinalis) were analyzed, in which the wall and content of the medial portion of the intestine were considered separately. A total of 66 fish (age class 2+) were sampled, of which 46 were wild and 20 were farmed brook trout, in two different years. Microbiota data were obtained using a 16S metabarcoding approach by analyzing the V3-V4 hypervariable regions of the corresponding 16S rRNA. The data showed that the core microbiota of these species consist of Proteobacteria (Alpha- and Gammaproteobacteria), Actinobacteria, Firmicutes (Bacilli and Clostridia), and, only for farmed animals, Fusobacteria. The latter taxon's presence is likely related to the fishmeal-based diet administered to farmed brook trout. Indeed, alpha and beta diversity analysis showed differences between wild and farmed fish. Finally, statistically significant differences in the microbiota composition were observed between the intestinal walls and contents of wild fish, while no differences were detected in reared animals. Our work represents the first study on the intestinal microbiota of brook trout with respect to both farmed and wild specimens. Future studies might focus on the comparison of our data with those pertaining to other fish species and on the study of other portions of the brook trout intestine.

SELECTION OF CITATIONS
SEARCH DETAIL
...