Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 13(18): 3395-3403, 2017 May 14.
Article in English | MEDLINE | ID: mdl-28429007

ABSTRACT

The electrical conductivity of exfoliated graphite in water nanofluids has been experimentally determined, and compared with the same property when the dispersed nanosheets have been oxidized. The effect of oxidation on this property is different if compared with the case of sintered dry nanosheets. In any case, for the sintered raw material the conduction behaves as expected in a metal, while for the nanofluid it shows values and trends typical of a weak electrolyte solution. The effect of oxidation on the electrical conductivity of exfoliated graphite can be explained as being caused by the dissociation in the fluid phase of the moieties resulting from the chemical functionalization process. This opens the possibility of designing a functionalization process to tune the nanofluid electrical conductivity.

2.
J Phys Chem B ; 117(37): 10826-33, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23964834

ABSTRACT

The study of solid-fluid transitions in fluorinated ionic liquids using differential scanning calorimetry, rheology, and molecular modeling techniques is an essential step toward the understanding of their dynamics and the thermodynamics and the development of potential applications. Two fluorinated ionic liquids were studied: 1-hexyl-3-methylimidazolium perfluorobutanesulfonate, HMIm(PFBu)SO3, and tetrabutylammonium perfluorobutanesulfonate, NB4(PFBu)SO3. The experimental calorimetric and rheological data were analyzed taking into account the possible mesoscale structure of the two fluorinated ionic liquids. The simulation results indicate the possible formation of three nanosegregated domains-polar, nonpolar, and fluorous-that may have a profound impact on ionic liquid research. In the case of HMIm (PFBu)SO3 the three types of mesoscopic domains can act as interchangeable jigsaw pieces enabling the formation of multiple types of crystals and inducing the observed calorimetry and rheological trends.

3.
Phys Rev Lett ; 100(15): 158302, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18518160

ABSTRACT

We study the transport of dextran sulfate through a protein channel as a function of applied voltage. Below 60 mV, the chain's entrance to the pore is hindered by an entropic barrier; above 60 mV, the strong local electric field forces the chain entrance. The effective charge of the polyelectrolyte inside the pore is reduced. We observe two types of blockades which have durations that decrease when the applied voltage increases. The shortest is a straddling time between the polyelectrolyte and the pore; the longest is the translocation time. The translocation time obeys an exponential dependence upon applied voltage.


Subject(s)
Dextran Sulfate/chemistry , Hemolysin Proteins/chemistry , DNA, Single-Stranded/chemistry , Electrochemistry , Entropy , Lipid Bilayers/chemistry , Osmolar Concentration
4.
Langmuir ; 21(7): 2675-81, 2005 Mar 29.
Article in English | MEDLINE | ID: mdl-15779934

ABSTRACT

Dediazoniation of o-methylbenzenediazonium tetrafluoroborate was investigated in SDS/BuOH/H2O (SDS = sodium dodecyl sulfate) reverse micelles, RMs, and, for comparison, in binary BuOH/H2O mixtures by employing a combination of spectrophotometric and chromatographic techniques. RMs were characterized by steady-state fluorescence; the data indicate that the aggregation number of the RMs increase upon increasing [SDS], while the radius of the water pool is mainly controlled by the amount of water in the system, and that the thickness of the interfacial region increases upon increasing the amount of BuOH in the system, in agreement with literature reports. Experimental evidence suggests that dediazoniation mainly takes place in the interfacial region of the RMs. Kinetic data show that a turnover from the heterolytic to the homolytic mechanism takes place about pH = 5; the variation of the observed rate constants, k(obs,) with pH following an S-shaped curve. At pH approximately 2, k(obs) values are insensitive to solvent composition both in RMs and in the binary mixture; however, k(obs) values in RMs are slightly lower than those in BuOH/H2O, probably due to the presence of SDS. High-performance liquid chromatography analyses of the reaction mixture indicate, in both RMs and in binary mixtures, the main dediazoniation products are the heterolytic ArOH and ArOBu, their yields depending on the composition of the system, and only small (<10%) amounts of the reduction ArH product were detected. The data at low pH are interpreted in terms of a DN + AN dediazoniation mechanism, i.e., a rate-limiting formation of an extremely reactive aryl cation that further reacts with available nucleophiles in the solvation shell.

SELECTION OF CITATIONS
SEARCH DETAIL
...