Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Nanotechnol ; 9(3): 217-235, 2021.
Article in English | MEDLINE | ID: mdl-33745427

ABSTRACT

BACKGROUND: Tamoxifen is widely used for the treatment of estrogen receptor-positive breast cancer. However, it is associated with severe side effects of cancerous proliferation on the uterus endometrium. The tumor-targeting formulation strategies can effectively overcome drug side effects of tamoxifen and provide safer drug treatment. OBJECTIVE: This study aimed to design tumor-targeted PLGA nanoparticles of tamoxifen by attaching hyaluronic acid (HA) as a ligand to actively target the CD44 receptors present at breast cancer cells surface. METHODS: PLGA-PEG-HA conjugate was synthesized in the laboratory, and its tamoxifen-loaded nanoparticles were fabricated and characterized by FTIR, NMR, DSC, and XRD analysis. Formulation optimization was done by Box-Behnken design using Design-Expert software. The formulations were evaluated for in vitro drug release and cytotoxic effect on MCF-7 cell lines. RESULTS: The particle size, PDI, and drug encapsulation efficiency of optimized nanoparticles were 294.8, 0.626, and 65.16%, respectively. Optimized formulation showed 9.56% burst release and sustained drug release for 8h. The drug release was affected by non-Fickian diffusion process and supplemented further by the erosion of polymeric matrix which followed the Korsmeyer-Peppas model. MTT cell line assay showed 47.48% cell mortality when treated with tamoxifen-loaded PLGA- PEG-HA nanoparticles. CONCLUSION: Hyaluronic acid conjugated PLGA-PEG nanoparticles of tamoxifen were designed for active targeting to cancerous breast cells. The results of the MTT assay showed that tamoxifen nanoparticles formulation was more cytotoxic than tamoxifen drug alone, which is attributed to their preferential uptake by cell lines by the affinity of CD44 receptors of cell lines to HA ligand present in nanoparticles.


Subject(s)
Hyaluronic Acid , Nanoparticles , Cell Line, Tumor , Drug Carriers , Female , Humans , Tamoxifen
2.
Pharm Res ; 34(12): 2779-2786, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28924739

ABSTRACT

PURPOSE: The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. METHODS: The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. RESULTS: The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. CONCLUSIONS: The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.


Subject(s)
Drug Carriers/chemistry , Drug Contamination/prevention & control , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Polyvinyl Alcohol/isolation & purification , Surface-Active Agents/isolation & purification , Ultrafiltration/methods , Antineoplastic Agents, Hormonal/chemistry , Emulsifying Agents/chemistry , Equipment Design , Membranes, Artificial , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Tamoxifen/chemistry , Ultrafiltration/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...