Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1235675, 2023.
Article in English | MEDLINE | ID: mdl-37675103

ABSTRACT

Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.


Subject(s)
Listeria monocytogenes , Macrophages , Phagocytosis , Microscopy , Immunity, Innate
2.
Brain Commun ; 5(4): fcad197, 2023.
Article in English | MEDLINE | ID: mdl-37680691

ABSTRACT

Bilateral vestibular schwannoma is the hallmark of NF2-related schwannomatosis, a rare tumour predisposition syndrome associated with a lifetime of surgical interventions, radiotherapy and off-label use of the anti-angiogenic drug bevacizumab. Unilateral vestibular schwannoma develops sporadically in non-NF2-related schwannomatosis patients for which there are no drug treatment options available. Tumour-infiltrating immune cells such as macrophages and T-cells correlate with increased vestibular schwannoma growth, which is suggested to be similar in sporadic and NF2-related schwannomatosis tumours. However, differences between NF2-related schwannomatosis and the more common sporadic disease include NF2-related schwannomatosis patients presenting an increased number of tumours, multiple tumour types and younger age at diagnosis. A comparison of the tumour microenvironment in sporadic and NF2-related schwannomatosis tumours is therefore required to underpin the development of immunotherapeutic targets, identify the possibility of extrapolating ex vivo data from sporadic vestibular schwannoma to NF2-related schwannomatosis and help inform clinical trial design with the feasibility of co-recruiting sporadic and NF2-related schwannomatosis patients. This study drew together bulk transcriptomic data from three published Affymetrix microarray datasets to compare the gene expression profiles of sporadic and NF2-related schwannomatosis vestibular schwannoma and subsequently deconvolved to predict the abundances of distinct tumour immune microenvironment populations. Data were validated using quantitative PCR and Hyperion imaging mass cytometry. Comparative bioinformatic analyses revealed close similarities in NF2-related schwannomatosis and sporadic vestibular schwannoma tumours across the three datasets. Significant inflammatory markers and signalling pathways were closely matched in NF2-related schwannomatosis and sporadic vestibular schwannoma, relating to the proliferation of macrophages, angiogenesis and inflammation. Bulk transcriptomic and imaging mass cytometry data identified macrophages as the most abundant immune population in vestibular schwannoma, comprising one-third of the cell mass in both NF2-related schwannomatosis and sporadic tumours. Importantly, there were no robust significant differences in signalling pathways, gene expression, cell type abundance or imaging mass cytometry staining between NF2-related schwannomatosis and sporadic vestibular schwannoma. These data indicate strong similarities in the tumour immune microenvironment of NF2-related schwannomatosis and sporadic vestibular schwannoma.

3.
Front Mol Biosci ; 10: 1176107, 2023.
Article in English | MEDLINE | ID: mdl-37441161

ABSTRACT

Transcription of almost all mammalian genes occurs in stochastic bursts, however the fundamental control mechanisms that allow appropriate single-cell responses remain unresolved. Here we utilise single cell genomics data and stochastic models of transcription to perform global analysis of the toll-like receptor (TLR)-induced gene expression variability. Based on analysis of more than 2000 TLR-response genes across multiple experimental conditions we demonstrate that the single-cell, gene-by-gene expression variability can be empirically described by a linear function of the population mean. We show that response heterogeneity of individual genes can be characterised by the slope of the mean-variance line, which captures how cells respond to stimulus and provides insight into evolutionary differences between species. We further demonstrate that linear relationships theoretically determine the underlying transcriptional bursting kinetics, revealing different regulatory modes of TLR response heterogeneity. Stochastic modelling of temporal scRNA-seq count distributions demonstrates that increased response variability is associated with larger and more frequent transcriptional bursts, which emerge via increased complexity of transcriptional regulatory networks between genes and different species. Overall, we provide a methodology relying on inference of empirical mean-variance relationships from single cell data and new insights into control of innate immune response variability.

4.
Front Mol Biosci ; 10: 1187187, 2023.
Article in English | MEDLINE | ID: mdl-37228587

ABSTRACT

Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context. We find that cells with high levels of the negative regulator IκBα remain responsive to inflammatory stimuli and maintain dynamics for both p65 and IκBα. In contrast, canonical target gene expression is dramatically reduced by overexpression of IκBα, but can be partially rescued by overexpression of p65. Treatment with leptomycin B to promote nuclear accumulation of IκB⍺ also suppresses canonical target gene expression, suggesting a mechanism in which nuclear IκB⍺ accumulation prevents productive p65 interaction with promoter binding sites. This causes reduced target promoter binding and gene transcription, which we validate by chromatin immunoprecipitation and in primary cells. Overall, we show how inflammatory gene transcription is modulated by the expression levels of both IκB⍺ and p65. This results in an anti-inflammatory effect on transcription, demonstrating a broad mechanism to modulate the strength of inflammatory response.

5.
Front Immunol ; 13: 947213, 2022.
Article in English | MEDLINE | ID: mdl-36238296

ABSTRACT

Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/ß1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/ß1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network's ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.


Subject(s)
Interferon-alpha , Protein-Tyrosine Kinases , Antiviral Agents , Feedback , Interferon-alpha/metabolism , Janus Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA, Messenger , STAT Transcription Factors/metabolism , Transcription, Genetic
6.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743048

ABSTRACT

Mathematical modeling of signaling pathways and regulatory networks has been supporting experimental research for some time now. Sensitivity analysis, aimed at finding model parameters whose changes yield significantly altered cellular responses, is an important part of modeling work. However, sensitivity methods are often directly transplanted from analysis of technical systems, and thus, they may not serve the purposes of analysis of biological systems. This paper presents a novel sensitivity analysis method that is particularly suited to the task of searching for potential molecular drug targets in signaling pathways. Using two sample models of pathways, p53/Mdm2 regulatory module and IFN-ß-induced JAK/STAT signaling pathway, we show that the method leads to biologically relevant conclusions, identifying processes suitable for targeted pharmacological inhibition, represented by the reduction of kinetic parameter values. That, in turn, facilitates subsequent search for active drug components.


Subject(s)
Models, Biological , Signal Transduction , Kinetics , Signal Transduction/physiology
7.
Cell Syst ; 11(3): 300-314.e8, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32918862

ABSTRACT

Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimulation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tumor necrosis factor α conform to a standard stochastic switch model, while transcription of interleukin-1ß involves an additional regulatory step resulting in increased heterogeneity. Despite different modes of regulation, systematic analysis of single-cell data for a range of genes demonstrates that the variability in transcript count is linearly constrained by the mean response over a range of conditions. Mathematical modeling of smFISH counts and experimental perturbation of chromatin state demonstrates that linear constraints emerge through modulation of transcriptional bursting along with gene-specific relationships. Overall, our analyses demonstrate that the variability of the inducible single-cell mRNA response is constrained by transcriptional bursting.


Subject(s)
RNA, Messenger/genetics , Toll-Like Receptors/metabolism , Humans , Models, Theoretical , Signal Transduction
8.
Cell Commun Signal ; 18(1): 77, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448393

ABSTRACT

BACKGROUND: Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS: We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1ß (IL1ß) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS: We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1ß stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1ß-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1ß-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1ß-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1ß-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS: We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.


Subject(s)
Gene Expression/drug effects , Heat-Shock Response , Inflammation/metabolism , Interleukin-1beta/pharmacology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Humans , MCF-7 Cells
9.
Front Immunol ; 10: 2168, 2019.
Article in English | MEDLINE | ID: mdl-31572379

ABSTRACT

The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.


Subject(s)
Cell Nucleus/immunology , Colitis, Ulcerative/immunology , Crohn Disease/immunology , Macrophages/immunology , Signal Transduction/immunology , Transcription Factor RelA/immunology , Active Transport, Cell Nucleus/genetics , Active Transport, Cell Nucleus/immunology , Adult , Animals , Cell Nucleus/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Crohn Disease/genetics , Crohn Disease/pathology , Female , Humans , Macrophages/pathology , Male , Mice , Mice, Knockout , Middle Aged , Signal Transduction/genetics , Transcription Factor RelA/genetics
10.
Sci Signal ; 11(540)2018 07 24.
Article in English | MEDLINE | ID: mdl-30042130

ABSTRACT

Toll-like receptor (TLR) signaling regulates macrophage activation and effector cytokine propagation in the constrained environment of a tissue. In macrophage populations, TLR4 stimulates the dose-dependent transcription of nuclear factor κB (NF-κB) target genes. However, using single-RNA counting, we found that individual cells exhibited a wide range (three orders of magnitude) of expression of the gene encoding the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The TLR4-induced TNFA transcriptional response correlated with the extent of NF-κB signaling in the cells and their size. We compared the rates of TNF-α production and uptake in macrophages and mouse embryonic fibroblasts and generated a mathematical model to explore the heterogeneity in the response of macrophages to TLR4 stimulation and the propagation of the TNF-α signal in the tissue. The model predicts that the local propagation of the TLR4-dependent TNF-α response and cellular NF-κB signaling are limited to small distances of a few cell diameters between neighboring tissue-resident macrophages. In our predictive model, TNF-α propagation was constrained by competitive uptake of TNF-α from the environment, rather than by heterogeneous production of the cytokine. We propose that the highly constrained architecture of tissues enables effective localized propagation of inflammatory cues while avoiding out-of-context responses at longer distances.


Subject(s)
Inflammation/immunology , Macrophage Activation , Macrophages/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Inflammation/metabolism , Macrophages/immunology , Mice , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , RAW 264.7 Cells , Single-Cell Analysis , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/immunology
11.
PLoS Comput Biol ; 14(4): e1006130, 2018 04.
Article in English | MEDLINE | ID: mdl-29708974

ABSTRACT

Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKß subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.


Subject(s)
Heat-Shock Response/physiology , Models, Biological , NF-kappa B/metabolism , Cell Line , Computational Biology , Computer Simulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , I-kappa B Kinase/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Single-Cell Analysis , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
J Immunol ; 199(8): 2652-2667, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28904128

ABSTRACT

TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.


Subject(s)
Calcium/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Calcium Ionophores/immunology , Humans , Jurkat Cells , Lymphocyte Activation , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Phosphotransferases/metabolism , Receptor Cross-Talk , Signal Transduction , Transcription Factor AP-1/metabolism
13.
Elife ; 52016 10 04.
Article in English | MEDLINE | ID: mdl-27700985

ABSTRACT

Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted.


Subject(s)
Cell Differentiation , Cell Proliferation , Gene Expression Regulation , MicroRNAs/metabolism , Neurons/physiology , Stem Cells/physiology , Transcription Factor HES-1/metabolism , Computer Simulation , Humans
14.
Nat Commun ; 7: 12504, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27509875

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1ß and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics.


Subject(s)
Alzheimer Disease/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Flufenamic Acid/pharmacology , Inflammasomes/metabolism , Mefenamic Acid/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alzheimer Disease/metabolism , Animals , Bone Marrow Cells/metabolism , Cell Death , Chloride Channels/metabolism , Cysteine/metabolism , Female , Genotype , Inflammation , Interleukin-1beta/metabolism , Macrophages/metabolism , Memory Disorders/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pattern Recognition, Visual/drug effects , Rats
15.
Nat Commun ; 7: 12057, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27381163

ABSTRACT

Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1ß instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation.


Subject(s)
Interleukin-1beta/pharmacology , NF-KappaB Inhibitor alpha/genetics , NF-kappa B/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/pharmacology , Cell Line, Tumor , Feedback, Physiological , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Luminescent Proteins/genetics , Luminescent Proteins/immunology , NF-KappaB Inhibitor alpha/immunology , NF-kappa B/immunology , Neurons , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/antagonists & inhibitors , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Red Fluorescent Protein
16.
Elife ; 52016 05 17.
Article in English | MEDLINE | ID: mdl-27185527

ABSTRACT

Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle.


Subject(s)
Cell Cycle , Cell Proliferation , E2F1 Transcription Factor/metabolism , E2F4 Transcription Factor/metabolism , Immunity, Innate , NF-kappa B/metabolism , Signal Transduction , Cell Line , Humans
17.
Methods Mol Biol ; 1417: 75-88, 2016.
Article in English | MEDLINE | ID: mdl-27221482

ABSTRACT

The pro-inflammatory cytokine interleukin (IL)-1ß is an important mediator of the inflammatory response. In order to perform its role in the inflammatory cascade, IL-1ß must be secreted from the cell, yet it lacks a signal peptide that is required for conventional secretion, and the exact mechanism of release remains undefined. Conventional biochemical methods have limited the investigation into the processes involved in IL-1ß secretion to population dynamics, yet heterogeneity between cells has been observed at a single-cell level. Here, greater sensitivity is achieved with the use of a newly developed vector that codes for a fluorescently labelled version of IL-1ß. Combining this with real-time single-cell confocal microscopy using the methods described here, we have developed an effective protocol for investigating the mechanisms of IL-1ß secretion and the testing of the hypothesis that IL-1ß secretion requires membrane permeabilisation.


Subject(s)
Interleukin-1beta/metabolism , Macrophages/cytology , Single-Cell Analysis/methods , Animals , Cells, Cultured , Macrophages/metabolism , Mice , Microscopy, Confocal , Signal Transduction
18.
J Math Biol ; 70(3): 591-620, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24658784

ABSTRACT

The relationship between components of biochemical network and the resulting dynamics of the overall system is a key focus of computational biology. However, as these networks and resulting mathematical models are inherently complex and non-linear, the understanding of this relationship becomes challenging. Among many approaches, model reduction methods provide an avenue to extract components responsible for the key dynamical features of the system. Unfortunately, these approaches often require intuition to apply. In this manuscript we propose a practical algorithm for the reduction of biochemical reaction systems using fast-slow asymptotics. This method allows the ranking of system variables according to how quickly they approach their momentary steady state, thus selecting the fastest for a steady state approximation. We applied this method to derive models of the Nuclear Factor kappa B network, a key regulator of the immune response that exhibits oscillatory dynamics. Analyses with respect to two specific solutions, which corresponded to different experimental conditions identified different components of the system that were responsible for the respective dynamics. This is an important demonstration of how reduction methods that provide approximations around a specific steady state, could be utilised in order to gain a better understanding of network topology in a broader context.


Subject(s)
Algorithms , Models, Biological , NF-kappa B/metabolism , Computational Biology , Feedback, Physiological , Mathematical Concepts , Metabolic Networks and Pathways , Signal Transduction , Systems Biology , Tumor Necrosis Factor-alpha/metabolism
19.
Front Genet ; 5: 408, 2014.
Article in English | MEDLINE | ID: mdl-25477903
20.
J Theor Biol ; 297: 137-47, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22202812

ABSTRACT

White's lab established that strong, continuous stimulation with tumour necrosis factor-α (TNFα) can induce sustained oscillations in the subcellular localisation of the transcription factor nuclear factor κB (NF-κB). But the intensity of the TNFα signal varies substantially, from picomolar in the blood plasma of healthy organisms to nanomolar in diseased states. We report on a systematic survey using computational bifurcation theory to explore the relationship between the intensity of TNFα stimulation and the existence of sustained NF-κB oscillations. Using a deterministic model developed by Ashall et al. in 2009, we find that the system's responses to TNFα are characterised by a supercritical Hopf bifurcation point: above a critical intensity of TNFα the system exhibits sustained oscillations in NF-kB localisation. For TNFα below this critical value, damped oscillations are observed. This picture depends, however, on the values of the model's other parameters. When the values of certain reaction rates are altered the response of the signalling pathway to TNFα stimulation changes: in addition to the sustained oscillations induced by high-dose stimulation, a second oscillatory regime appears at much lower doses. Finally, we define scores to quantify the sensitivity of the dynamics of the system to variation in its parameters and use these scores to establish that the qualitative dynamics are most sensitive to the details of NF-κB mediated gene transcription.


Subject(s)
Models, Immunological , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Biological Clocks/immunology , Dose-Response Relationship, Immunologic , Humans , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...