Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 150: 106247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988883

ABSTRACT

Needle insertion is one of the most common procedures in clinical practice. Existing statistics reveal that success rates of needle insertions can be low, leading to potential complications and patient discomfort. Real-time imaging techniques like ultrasound and X-ray can assist in improving precision, but even experienced practitioners may face challenges in visualizing the needle tip. Researchers have proposed models of force interactions during needle insertions into biological tissue to enhance accuracy. This article presents an evaluation of the forces acting on intravenous needles during insertion into skin. The aim was to explore mathematical models, compare them with data from tests on animal specimens, and select the most suitable model for future research. The experimental setup involved conducting needle insertion tests on animal-originated cadavers, using the Brucker Universal Mechanical Tester device, which measured the force response during vertical movement of the needle. The research was divided into 2 stages. In Stage I, force measurements were recorded for both the insertion and extraction phases of the hypodermic needles. The measurements were conducted for several different needle sizes, speed and insertion angles. In Stage II, five different models were examined to determine how well they matched the experimental data. Based on the analysis of fit quality coefficients, the Gordon's exponential model was identified as the best fit to the measured data. The influence of needle size, insertion angle, and insertion speed on the measured force values was confirmed. Different insertion speeds revealed the viscoelastic properties of the tested samples. The presence of the skin layer affected the puncture force and force values for subsequent layers.


Subject(s)
Mechanical Phenomena , Needles , Animals , Humans , Models, Theoretical
2.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067375

ABSTRACT

Hydroxy double salts are layered materials that are considered to be biocompatible. For this reason, research has been initiated on the possibility of their use in drug delivery. Despite their use for several types of drugs, their potential for controlled release of mercaptopurine (MERC) has not been studied. In this work, the synthesized hydroxy double salt (HDS) material was used as a carrier for this drug for the first time. The effectiveness of HDS synthesis has been proven by such techniques as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Based on the FT-IR and energy-dispersive X-ray spectroscopy (EDS) results, the effectiveness of drug sorption was proven. The exact amount of drug retained was determined by the UV-Vis technique. The obtained results indicate that the drug is evenly distributed on the surface of the carrier, which is important during the controlled delivery of drugs. In the most important stage of the research, the effectiveness of drug release in response to changes in the pH of the environment was proven. The drug is not released into an environment that mimics healthy human tissues. It is released only after contact with the acidic environment that usually surrounds cancer cells. The low cellular toxicity of HDS and significant cytotoxic effect of HDS-MERC were confirmed by in vitro studies on MCF-7 human breast and DU145 prostate cancer cell lines and non-cancerous keratinocytes HaCaT. Interestingly, coupling with the HDS carrier increased the cytotoxic effect of MERC towards DU145 cells. Such an "intelligent" drug carrier for mercaptopurine has not been previously described in the literature. The obtained results indicate its great potential.

3.
Materials (Basel) ; 16(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36837339

ABSTRACT

Osteoporosis is the most common metabolic disease of the skeletal system and is characterized by impaired bone strength. This translates into an increased risk of low-energy fractures, which means fractures caused by disproportionate force. This disease is quite insidious, its presence is usually detected only at an advanced stage, where treatment with pharmaceuticals does not produce sufficient results. It is obligatory to replace the weakened bone with an implant. For this reason, it is necessary to look at the possibilities of surface modification used in tissue engineering, which, in combination with the drugs for osteoporosis, i.e., bisphosphonates, may constitute a new and effective method for preventing the deterioration of the osteoporotic state. To achieve this purpose, titanium implants coated with magnesium or zinc zeolite were prepared. Both the sorption and release profiles differed depending on the type of ion in the zeolite structure. The successful release of risedronate from the materials at a low level was proven. It can be concluded that the proposed solution will allow the preparation of endoprostheses for patients with bone diseases such as osteoporosis.

4.
Materials (Basel) ; 15(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143728

ABSTRACT

Cortical bone machining is commonly used in craniofacial surgery. The shaping of bone surfaces requires a precise determination of the process's complexity due to the cutting tool's defined or undefined geometry. Therefore, research was carried out to assess the impact of the rake angle (γ), clearance angle and depth of cut (d) on the cortical bone machining process. Analysis was carried out based on the orthogonal cutting in three directions. The cutting tool shape was simplified, and the cutting forces and the chip-formation process were monitored. The highest values of the resultant cutting force and shear force were recorded for γ < 0. The specific cutting force decreases with the increase of d. Cutting in the transverse direction is characterized by the highest values of resultant cutting force and shear force. The coefficient of friction depends primarily on the d and takes a constant value or increases with the increase of γ. The tests showed that the chips are formed in the entire range of d ≥ 0.5 µm and create regular shapes for d ≥ 10 µm. The research novelty confirms that even negative cutting angles guarantee controlled cutting and can find wider application in surgical procedures.

5.
J Biomed Mater Res B Appl Biomater ; 110(2): 431-437, 2022 02.
Article in English | MEDLINE | ID: mdl-34288398

ABSTRACT

The most popular drugs used to prevent osteoporosis that causes low mineral density and weakened microstructure of bones are bisphosphonates. Bisphosphonates can be administered in several ways, but each delivery method has drawbacks. Due to this, new methods of their delivery are being sought. Titanium implants coated with calcium titanate were prepared in this work as carriers for bisphosphonates. Such a modification has been proposed in order to improve the therapeutic properties of the implant. Slow release of the drug at a constant level will positively affect the recovery process and osteointegration. Furthermore, the drug will be slowly released very close to the area affected by osteoporosis. These studies were confirmed, using a variety of methods: EDS and XPS (to examine surface modification and drug sorption), Raman mapping (to proof the presence of the drug on the entire surface of the material) and UV-VIS spectroscopy (to determine bisphosphonate sorption and release profile). It was proved that the active substance (sorbed on the implant) could be completely released upon contact with body fluids within a month. The obtained results will allow for the production of endoprostheses dedicated to patients with osteoporosis in the future.


Subject(s)
Osteoporosis , Titanium , Calcium , Coated Materials, Biocompatible/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/therapeutic use , Humans , Osseointegration , Osteoporosis/drug therapy , Prostheses and Implants , Surface Properties
6.
J Clin Med ; 10(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208953

ABSTRACT

The multi-spiked connecting scaffold (MSC-Scaffold) prototype is the essential innovation in the fixation of components of resurfacing total hip arthroplasty (THRA) endoprostheses in the subchondral trabecular bone. We conducted the computed micro-tomography (micro-CT) assessment of the subchondral trabecular bone microarchitecture before and after the MSC-Scaffold embedding in femoral heads removed during long-stem endoprosthesis total hip arthroplasty (THA) of different bone densities from 4 patients with hip osteoarthritis (OA). The embedding of the MSC-Scaffold in subchondral trabecular bone causes the change in its relative area (BA/TA, bone area/total area ratio) ranged from 18.2% to 24.7% (translating to the calculated density ρB relative change 11.1-14.4%, and the compressive strength S relative change 75.3-122.7%) regardless of its initial density (before the MSC-Scaffold embedding). The densification of the trabecular microarchitecture of subchondral trabecular bone due to the MSC-Scaffold initial embedding gradually decreases with the increasing distance from the apexes of the MSC-Scaffold's spikes while the spatial extent of this subchondral trabecular bone densification ranged from 1.5 to 2.5 mm (which is about half the height of the MSC-Scaffold's spikes). It may be suggested, despite the limited number of examined femoral heads, that: (1) the magnitude of the effect of the MSC-Scaffold embedding on subchondral trabecular bone densification may be a factor contributing to the maintenance of the MSC-Scaffold also for decreased initial bone density values, (2) the deeper this effect of the subchondral trabecular bone densification, the better strength of subchondral trabecular bone, and as consequence, the better post-operative embedding of the MSC-Scaffold in the bone should be expected.

7.
Materials (Basel) ; 14(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809176

ABSTRACT

Our team has been working for some time on designing a new kind of biomimetic fixation of resurfacing endoprostheses, in which the innovative multi-spiked connecting scaffold (MSC-Scaffold) that mimics the natural interface between articular cartilage and periarticular trabecular bone in human joints is the crucial element. This work aimed to develop a numerical model enabling the design of the considered joint replacement implant that would reflect the mechanics of interacting biomaterials. Thus, quantitative micro-CT analysis of density distribution in bone material during the embedding of MSC-Scaffold in periarticular bone was applied. The performed numerical studies and corresponding mechanical tests revealed, under the embedded MSC-Scaffold, the bone material densification affecting its mechanical properties. On the basis of these findings, the built numerical model was modified by applying a simulated insert of densified bone material. This modification led to a strong correlation between the re-simulation and experimental results (FVU = 0.02). The biomimetism of the MSC-Scaffold prototype that provided physiological load transfer from implant to bone was confirmed based on the Huber-von Mises-Hencky (HMH) stress maps obtained with the validated finite element (FE) model of the problem. The micro-CT bone density assessment performed during the embedding of the MSC-Scaffold prototype in periarticular bone provides insight into the mechanical behaviour of the investigated implant-bone system and validates the numerical model that can be used for the design of material and geometric features of a new kind of resurfacing endoprostheses fixation.

8.
Sci Rep ; 10(1): 19289, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159155

ABSTRACT

Commonly used endoprostheses in the orthopedic industry are those made of Ti6Al4V titanium alloy. Unfortunately, this material has low abrasion resistance, and therefore methods of their modification are still sought. A sensible approach is coating the alloy with a layer of a polymer having higher abrasion resistance. The adhesion of polymers to alloy is low, therefore the alloy requires prior modification. In this work, the alloy was modified with three types of diazonium salt and the influence of substituent on the effectiveness of modification was determined. Then, five or ten polyurethane layers were attached to the surface of the modified alloy. Using Raman mapping, the uniform distribution of layers was proved. Layers are stable in simulated human body fluids. The effectiveness of attaching subsequent layers of polyurethane was also confirmed by nanoindentation. The main focus of this work was to improve the wear resistance of the titanium alloy. The obtained results indicate that the titanium alloy with a polyurethane layer has almost ten times lower coefficient of friction compared to pure alloy. Such a low value has not been described in the literature so far. These results are the first step for obtaining endoprostheses with very high abrasion resistance.

9.
Biomed Res Int ; 2019: 6952649, 2019.
Article in English | MEDLINE | ID: mdl-31355275

ABSTRACT

Resurfacing hip and knee endoprostheses are generally embedded in shallow, prepared areas in the bone and secured with cement. Massive cement penetration into periarticular bone, although it provides sufficient primary fixation, leads to the progressive weakening of peri-implant bone and results in failures. The aim of this paper was to investigate in an animal model the first biomimetic fixation of components of resurfacing arthroplasty endoprostheses by means of the innovative multispiked connecting scaffold (MSC-Scaffold). The partial resurfacing knee arthroplasty (RKA) endoprosthesis working prototype with the MSC-Scaffold was designed for biomimetic fixation investigations using reverse engineering methods and manufactured by selective laser melting. After Ca-P surface modification of bone contacting surfaces of the MSC-Scaffold, the working prototypes were implanted in 10 swines. Radiological, histopathological, and micro-CT examinations were performed on retrieved bone-implant specimens. Clinical examination confirmed very good stability (4 in 5-point Likert scale) of the operated knee joints. Radiological examinations showed good implant fixation (radiolucency less than 2 mm) without any signs of migration. Spaces between the MSC-Scaffold spikes were penetrated by bone tissue. The histological sections showed newly formed trabecular bone tissue between the spikes, and the trabeculae of periscaffold bone were seen in contact with the spikes. The micro-CT results showed the highest percentage of bone tissue ingrowths into the MSC-Scaffold at a distance of 2.5÷3.0 mm from the spikes bases. The first biomimetic fixation for resurfacing arthroplasty was successfully verified in 10 swines investigations using RKA endoprosthesis working prototypes. The performed research shows that the MSC-Scaffold allows for cementless and biomimetic fixation of resurfacing endoprosthesis components in periarticular cancellous bone.


Subject(s)
Arthroplasty, Replacement, Knee , Biomimetic Materials , Internal Fixators , Knee Joint , Prosthesis Design , Animals , Humans , Knee Joint/metabolism , Knee Joint/pathology , Knee Joint/surgery , Swine
10.
Comput Methods Biomech Biomed Engin ; 21(9): 541-547, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30396280

ABSTRACT

The multispiked connecting scaffold (MSC-scaffold) prototype is an essential innovation in the fixation of components of resurfacing arthroplasty (RA) endoprostheses, providing their entirely non-cemented and bone-tissue-preserving fixation in peri-articular bone. An FE study is proposed to evaluate the influence of geometrical features of the MSC-scaffold on the transfer of mechanical load in peri-implant bone. For this study, an FE model of Ti-Alloy MSC-scaffold prototype embedded in a bilinear elastic, transversely isotropic bone material was built. For the compressive load on the MSC-scaffold, maps of Huber-Mises-Hencky (HMH) stress in peri-implant bone were determined. The influence of the distance between the bases of neighbouring spikes, the apex angle of spikes, and the height of the spherical cup of spikes of the MSC-scaffold were analysed. It was found that the changes in the distance between the bases of neighbouring spikes from 0.2 to 0.5 mm cause the HMH stress to increase in bone material by 32%. The changes of the apex angle of spikes from 2° to 4° decrease the HMH stress in bone material by 39%. The changes of height of the spherical cup of spikes from 0 to 0.12 mm increase the HMH stress in bone material by 24%. In conclusion, the spikes' apex angle and the distance between the bases of spikes of the MSC-scaffold are the key geometrical features determining the appropriate MSC-scaffold prototype design. The built FE model was found to be useful in bioengineering design of the novel fixation system for RA endoprostheses by means of the MSC-scaffold.


Subject(s)
Bone and Bones/physiology , Numerical Analysis, Computer-Assisted , Prostheses and Implants , Stress, Mechanical , Tissue Scaffolds/chemistry , Alloys , Biomimetic Materials/chemistry , Bone and Bones/drug effects , Computer Simulation , Finite Element Analysis , Humans , Titanium/pharmacology
11.
Appl Bionics Biomech ; 2017: 5638680, 2017.
Article in English | MEDLINE | ID: mdl-28785159

ABSTRACT

The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC-Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM-manufactured MSC-Scaffold prototype, compensating the reduced ability-due to the SLM technological limitations-to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM-manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC-Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM-manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural-geometric functionalization, allowing the MSC-Scaffold adequate redesigning and manufacturing in additive SLM technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...