Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Planta ; 260(1): 29, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879859

ABSTRACT

MAIN CONCLUSION: The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.


Subject(s)
Droughts , Millets/physiology , Stress, Physiological , Photosynthesis/physiology , Climate Change , Water/metabolism , Water/physiology , Adaptation, Physiological , Crops, Agricultural/physiology , Crops, Agricultural/growth & development , Drought Resistance
2.
Physiol Mol Biol Plants ; 26(11): 2151-2171, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33268920

ABSTRACT

Finger millet (Eleusine coracana L. Gaertn.) is a nutritious and climate-resilient crop with a C4 type carbon fixation pathway. The present study was aimed to assess the drought tolerance capacities of four finger millet genotypes based on their physiological and biochemical characteristics at three different phenological stages. Finger millet genotypes RAU 8, GPU 67, GPU 28 and MS 9272 were subjected to two water regimes, regular irrigation (control) and suspended irrigation (drought stress). During water regimes, morpho-physiological [biomass accumulation, leaf relative water content, and photosynthetic pigments] and biochemical changes [proline content, water soluble carbohydrates, antioxidant enzymes, and malondialdehyde content] were studied during seedling (18th day), vegetative (49th day) and early flowering stages (73rd day). The maintenance of growth especially root growth, biomass accumulation, the differential response in the concentration and changes of pigments, accumulation of proline, water-soluble carbohydrates and increased levels of antioxidant enzymes under drought stress play a major role in differential tolerance in finger millet genotypes that is conferred by the biplot analysis. The genotype RAU 8 is the most drought-tolerant genotype at all the three different phenological stages. Whereas the genotype GPU 67 was identified as sensitive at the seedling stage and its tolerance level was improved at vegetative and early flowering stages. The genotypes GPU 28 and MS 9272 were considered as drought sensitive at all three different phenological stages. Our results provide inputs to the breeders to select genotypes as parents and to design effective strategies in crop improvement programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...