Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Gut ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684238

ABSTRACT

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.

2.
J Crohns Colitis ; 18(1): 121-133, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-37565754

ABSTRACT

BACKGROUND AND AIMS: Pain is a cardinal symptom in inflammatory bowel disease [IBD]. An important structure in the transduction of pain signalling is the myenteric plexus [MP]. Nevertheless, IBD-associated infiltration of the MP by immune cells lacks in-depth characterisation. Herein, we decipher intra- and periganglionic immune cell infiltrations in Crohn´s disease [CD] and ulcerative colitis [UC] and provide a comparison with murine models of colitis. METHODS: Full wall specimens of surgical colon resections served to examine immune cell populations by either conventional immuno-histochemistry or immunofluorescence followed by either bright field or confocal microscopy. Results were compared with equivalent examinations in various murine models of intestinal inflammation. RESULTS: Whereas the MP morphology was not significantly altered in IBD, we identified intraganglionic IBD-specific B cell- and monocyte-dominant cell infiltrations in CD. In contrast, UC-MPs were infiltrated by CD8+ T cells and revealed a higher extent of ganglionic cell apoptosis. With regard to the murine models of intestinal inflammation, the chronic dextran sulphate sodium [DSS]-induced colitis model reflected CD [and to a lesser extent UC] best, as it also showed increased monocytic infiltration as well as a modest B cell and CD8+ T cell infiltration. CONCLUSIONS: In CD, MPs were infiltrated by B cells and monocytes. In UC, mostly CD8+ cytotoxic T cells were found. The chronic DSS-induced colitis in the mouse model reflected best the MP-immune cell infiltrations representative for IBD.


Subject(s)
Colitis, Ulcerative , Colitis , Crohn Disease , Inflammatory Bowel Diseases , Animals , Mice , Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Myenteric Plexus/metabolism , Colitis/chemically induced , Neurotransmitter Agents/adverse effects , Pain , Inflammation
3.
Front Med (Lausanne) ; 10: 1228938, 2023.
Article in English | MEDLINE | ID: mdl-37692784

ABSTRACT

The intestinal mucosal surface forms one of the largest areas of the body, which is in direct contact with the environment. Co-ordinated sensory functions of immune, epithelial, and neuronal cells ensure the timely detection of noxious queues and potential pathogens and elicit proportional responses to mitigate the threats and maintain homeostasis. Such tuning and maintenance of the epithelial barrier is constantly ongoing during homeostasis and its derangement can become a gateway for systemic consequences. Although efforts in understanding the gatekeeping functions of immune cells have led the way, increasing number of studies point to a crucial role of the enteric nervous system in fine-tuning and maintaining this delicate homeostasis. The identification of immune regulatory functions of enteric neuropeptides and glial-derived factors is still in its infancy, but has already yielded several intriguing insights into their important contribution to the tight control of the mucosal barrier. In this review, we will first introduce the reader to the current understanding of the architecture of the enteric nervous system and the epithelial barrier. Next, we discuss the key discoveries and cellular pathways and mediators that have emerged as links between the enteric nervous, immune, and epithelial systems and how their coordinated actions defend against intestinal infectious and inflammatory diseases. Through this review, the readers will gain a sound understanding of the current neuro-immune-epithelial mechanisms ensuring intestinal barrier integrity and maintenance of intestinal homeostasis.

4.
Front Immunol ; 14: 1203903, 2023.
Article in English | MEDLINE | ID: mdl-37409125

ABSTRACT

A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.


Subject(s)
Gastrointestinal Diseases , Necroptosis , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Necrosis/pathology , Inflammation/pathology , Gastrointestinal Diseases/etiology
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108564

ABSTRACT

The paracaspase MALT1 is a crucial regulator of immune responses in various cellular contexts. Recently, there is increasing evidence suggesting that MALT1 might represent a novel key player in mucosal inflammation. However, the molecular mechanisms underlying this process and the targeted cell population remain unclear. In this study, we investigate the role of MALT1 proteolytic activity in the context of mucosal inflammation. We demonstrate a significant enrichment of MALT1 gene and protein expression in colonic epithelial cells of UC patients, as well as in the context of experimental colitis. Mechanistically we demonstrate that MALT1 protease function inhibits ferroptosis, a form of iron-dependent cell death, upstream of NF-κB signaling, which can promote inflammation and tissue damage in IBD. We further show that MALT1 activity contributes to STAT3 signaling, which is essential for the regeneration of the intestinal epithelium after injury. In summary, our data strongly suggests that the protease function of MALT1 plays a critical role in the regulation of immune and inflammatory responses, as well as mucosal healing. Understanding the mechanisms by which MALT1 protease function regulates these processes may offer novel therapeutic targets for the treatment of IBD and other inflammatory diseases.


Subject(s)
Inflammatory Bowel Diseases , Signal Transduction , Humans , Inflammation , Inflammatory Bowel Diseases/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , NF-kappa B/metabolism , Proteolysis , Epithelial Cells
6.
Gut ; 72(6): 1155-1166, 2023 06.
Article in English | MEDLINE | ID: mdl-36261293

ABSTRACT

OBJECTIVE: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN: Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS: PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS: Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Humans , Mice , Animals , Cyclooxygenase 2/metabolism , Presenilin-1/genetics , Signal Transduction/physiology , Colorectal Neoplasms/pathology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Disease Models, Animal , ErbB Receptors/metabolism
7.
Cancers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077828

ABSTRACT

For quite a long time, necrosis was considered a chaotic and unorganized form of cell death. However, studies conducted during the past few decades unveiled multiple types of programmed necrosis, such as necroptosis, pyroptosis and ferroptosis. These types of programmed necrosis have been shown to play crucial roles in mediating pathological processes, including tumorigenesis. Almost all key mediators, such as RIPK3 and MLKL in necroptosis, GSDMD and caspase 1/11 in pyroptosis and GPX4 in ferroptosis, are highly expressed in intestinal epithelial cells (IECs). An aberrant increase or decrease in programmed necrosis in IECs has been connected to intestinal disorders. Here, we review the pathways of programmed necrosis and the specific consequences of regulated necrosis in colorectal cancer (CRC) development. Translational aspects of programmed necrosis induction as a novel therapeutic alternative against CRC are also discussed.

8.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35491615

ABSTRACT

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Subject(s)
Caspase 8 , Endothelial Cells , Intestinal Mucosa , Animals , Caspase 8/metabolism , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enteritis/enzymology , Enteritis/pathology , Homeostasis , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/enzymology , Intestine, Small/pathology , Mice
9.
Cell Death Dis ; 13(1): 52, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022391

ABSTRACT

SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.


Subject(s)
Colonic Neoplasms , Necroptosis , Animals , Apoptosis , Colonic Neoplasms/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
10.
Gut ; 71(12): 2414-2429, 2022 12.
Article in English | MEDLINE | ID: mdl-34862250

ABSTRACT

OBJECTIVE: Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN: We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS: Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION: Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.


Subject(s)
Colitis, Ulcerative , Neutrophils , Mice , Animals , Neutrophils/metabolism , Protein-Arginine Deiminase Type 4 , Colitis, Ulcerative/metabolism , Thromboinflammation , Fibrin/metabolism
11.
Cells ; 10(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34943932

ABSTRACT

The extracellular protozoan parasite Giardia duodenalis is a well-known and important causative agent of diarrhea on a global scale. Macrophage pyroptosis has been recognized as an important innate immune effector mechanism against intracellular pathogens. Yet, the effects of noninvasive Giardia infection on macrophage pyroptosis and the associated molecular triggers and regulators remain poorly defined. Here we initially observed that NLRP3 inflammasome-mediated pyroptosis was activated in Giardia-treated macrophages, and inhibition of ROS, NLRP3, or caspase-1 could block GSDMD cleavage, IL-1ß, IL-18 and LDH release, and the cell viability reduction. We also confirmed that Giardia-induced NLRP3 inflammasome activation was involved in its K63 deubiquitination. Thus, six candidate deubiquitinases were screened, among which A20 was identified as an effective regulator. We then screened TLRs on macrophage membranes and found that upon stimulation TLR4 was tightly correlated to ROS enhancement, A20-mediated NLRP3 deubiquitination, and pyroptotic signaling. In addition, several Giardia-secreted proteins were predicted as trigger factors via secretome analysis, of which peptidyl-prolyl cis-trans isomerase B (PPIB) independently induced macrophage pyroptosis. This was similar to the findings from the trophozoite treatment, and also led to the TLR4-mediated activation of NLRP3 through K63 deubiquitination by A20. Collectively, the results of this study have significant implications for expanding our understanding of host defense mechanisms after infection with G. duodenalis.


Subject(s)
Diarrhea/genetics , Giardia lamblia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Animals , Cell Survival/drug effects , Deubiquitinating Enzymes/genetics , Diarrhea/immunology , Diarrhea/parasitology , Disease Models, Animal , Giardia lamblia/immunology , Giardia lamblia/pathogenicity , Host-Parasite Interactions/drug effects , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Inflammasomes/drug effects , Inflammasomes/immunology , Interleukin-18/genetics , Intracellular Signaling Peptides and Proteins/genetics , Isoenzymes/pharmacology , Macrophages/drug effects , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Peptidylprolyl Isomerase/pharmacology , Phosphate-Binding Proteins/genetics , Pyroptosis/drug effects , Pyroptosis/immunology , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/immunology , Trophozoites/drug effects , Trophozoites/pathogenicity , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Ubiquitination/genetics
12.
Cells ; 10(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34571902

ABSTRACT

Inflammatory bowel diseases (IBD) are characterized by chronic dysregulation of immune homeostasis, epithelial demise, immune cell activation, and microbial translocation. Each of these processes leads to proinflammatory changes via the release of cytokines, damage-associated molecular patterns (DAMPs), and pathogen-associated molecular patterns (PAMPs), respectively. The impact of these noxious agents on the survival and function of the enteric nervous system (ENS) is poorly understood. Here, we show that in contrast to an expected decrease, experimental as well as clinical colitis causes an increase in the transcript levels of enteric neuronal and glial genes. Immunostaining revealed an elevated neuronal innervation of the inflamed regions of the gut mucosa. The increase was seen in models with overt damage to epithelial cells and models of T cell-induced colitis. Transcriptomic data from treatment naïve pediatric IBD patients also confirmed the increase in the neuroglial genes and were replicated on an independent adult IBD dataset. This induction in the neuroglial genes was transient as levels returned to normal upon the induction of remission in both mouse models as well as colitis patients. Our data highlight the dynamic and robust nature of the enteric nervous system in colitis and open novel questions on its regulation.


Subject(s)
Colitis/pathology , Enteric Nervous System/pathology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/innervation , Neurons/pathology , Transcriptome , Animals , Colitis/etiology , Colitis/metabolism , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Mice , Neurons/immunology , Neurons/metabolism
13.
Nat Cell Biol ; 23(7): 796-807, 2021 07.
Article in English | MEDLINE | ID: mdl-34239062

ABSTRACT

Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.


Subject(s)
Colitis/metabolism , Colon/metabolism , Dinoprostone/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Necroptosis , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/pathology , Colitis/prevention & control , Colon/drug effects , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , HT29 Cells , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Necroptosis/drug effects , Organoids , Protein Kinases/genetics , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Prostaglandin E, EP4 Subtype/agonists , Receptors, Prostaglandin E, EP4 Subtype/genetics , Signal Transduction
14.
Front Med (Lausanne) ; 8: 664045, 2021.
Article in English | MEDLINE | ID: mdl-34136502

ABSTRACT

Inflammatory cytokines initiate and sustain the perpetuation of processes leading to chronic inflammatory conditions such as inflammatory bowel diseases (IBD). The nature of the trigger causing an inflammatory reaction decides whether type 1, type 17, or type 2 immune responses, typically characterized by the respective T- helper cell subsets, come into effect. In the intestine, Type 2 responses have been linked with mucosal healing and resolution upon an immune challenge involving parasitic infections. However, type 2 cytokines are frequently elevated in certain types of IBD in particular ulcerative colitis (UC) leading to the assumption that Th2 cells might critically support the pathogenesis of UC raising the question of whether such elevated type 2 responses in IBD are beneficial or detrimental. In line with this, previous studies showed that suppression of IL-13 and other type 2 related molecules in murine models could improve the outcomes of intestinal inflammation. However, therapeutic attempts of neutralizing IL-13 in ulcerative colitis patients have yielded no benefits. Thus, a better understanding of the role of type 2 cytokines in regulating intestinal inflammation is required. Here, we took a comparative transcriptomic approach to address how Th2 responses evolve in different mouse models of colitis and human IBD datasets. Our data show that type 2 immune-related transcripts are induced in the inflamed gut of IBD patients in both Crohn's disease and UC and across widely used mouse models of IBD. Collectively our data implicate that the presence of a type 2 signature rather defines a distinct state of intestinal inflammation than a disease-specific pathomechanism.

15.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Article in English | MEDLINE | ID: mdl-33075345
16.
Nat Rev Gastroenterol Hepatol ; 17(9): 543-556, 2020 09.
Article in English | MEDLINE | ID: mdl-32651553

ABSTRACT

The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.


Subject(s)
Cell Death/physiology , Epithelial Cells/pathology , Inflammatory Bowel Diseases/etiology , Intestinal Mucosa/pathology , Humans , Inflammation , Inflammatory Bowel Diseases/pathology
17.
Front Immunol ; 10: 2481, 2019.
Article in English | MEDLINE | ID: mdl-31695698

ABSTRACT

Neutrophils respond to various stimuli by decondensing and releasing nuclear chromatin characterized by citrullinated histones as neutrophil extracellular traps (NETs). This achieves pathogen immobilization or initiation of thrombosis, yet the molecular mechanisms of NET formation remain elusive. Peptidyl arginine deiminase-4 (PAD4) achieves protein citrullination and has been intricately linked to NET formation. Here we show that citrullination represents a major regulator of proteolysis in the course of NET formation. Elevated cytosolic calcium levels trigger both peptidylarginine deiminase-4 (PAD4) and calpain activity in neutrophils resulting in nuclear decondensation typical of NETs. Interestingly, PAD4 relies on proteolysis by calpain to achieve efficient nuclear lamina breakdown and chromatin decondensation. Pharmacological or genetic inhibition of PAD4 and calpain strongly inhibit chromatin decondensation of human and murine neutrophils in response to calcium ionophores as well as the proteolysis of nuclear proteins like lamin B1 and high mobility group box protein 1 (HMGB1). Taken together, the concerted action of PAD4 and calpain induces nuclear decondensation in the course of calcium-mediated NET formation.


Subject(s)
Calpain/immunology , Citrullination/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Nuclear Lamina/immunology , Animals , Calpain/genetics , Citrullination/genetics , Extracellular Traps/genetics , Humans , Mice , Mice, Knockout , Neutrophils/cytology , Nuclear Lamina/genetics , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/immunology
18.
Sci Rep ; 8(1): 12964, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154499

ABSTRACT

Chronic intoxication of mice with the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to morphological and metabolic changes closely resembling steatohepatitis, a severe form of metabolic liver disease in humans. Since human steatohepatitis (both the alcoholic and non-alcoholic type) is characterized by reduced expression of PPARα and disturbed lipid metabolism we investigated the role of this ligand-activated receptor in the development of DDC-induced liver injury. Acute DDC-intoxication was accompanied by early significant downregulation of Pparα mRNA expression along with PPARα-controlled stress-response and lipid metabolism genes that persisted in the chronic stage. Administration of the specific PPARα agonist fenofibrate together with DDC prevented the downregulation of PPARα-associated genes and also improved the stress response of Nrf2-dependent redox-regulating genes. Moreover, oxidative stress and inflammation were strongly reduced by DDC/fenofibrate co-treatment. In addition, fenofibrate prevented the disruption of hepatocyte intermediate filament cytoskeleton and the formation of Mallory-Denk bodies at late stages of DDC intoxication. Our findings show that, like in human steatohepatitis, PPARα is downregulated in the DDC model of steatohepatitis-like hepatocellular damage. Its downregulation and the pathomorphologic features of steatohepatitis are prevented by co-administration of fenofibrate.


Subject(s)
Down-Regulation/drug effects , Fatty Liver , Fenofibrate/pharmacology , Mallory Bodies/metabolism , PPAR alpha , Protein Aggregates/drug effects , Animals , Disease Models, Animal , Fatty Liver/chemically induced , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/prevention & control , Humans , Male , Mallory Bodies/pathology , Mice , Oxidative Stress/drug effects , PPAR alpha/agonists , PPAR alpha/biosynthesis , Pyridines/toxicity
19.
FASEB J ; 32(7): 3792-3802, 2018 07.
Article in English | MEDLINE | ID: mdl-29481310

ABSTRACT

Bile acids (BAs) are surfactant molecules that regulate the intestinal absorption of lipids. Thus, the modulation of BAs represents a potential therapy for nonalcoholic fatty liver disease (NAFLD), which is characterized by hepatic accumulation of fat and is a major cause of liver disease worldwide. Cyp8b1 is a critical modulator of the hydrophobicity index of the BA pool. As a therapeutic proof of concept, we aimed to determine the impact of Cyp8b1 inhibition in vivo on BA pool composition and as protection against NAFLD. Inhibition of Cyp8b1 expression in mice led to a remodeling of the BA pool, which altered its signaling properties and decreased intestinal fat absorption. In a model of cholesterol-induced NAFLD, Cyp8b1 knockdown significantly decreased steatosis and hepatic lipid content, which has been associated with an increase in fecal lipid and BA excretion. Moreover, inhibition of Cyp8b1 not only decreased hepatic lipid accumulation, but also resulted in the clearance of previously accumulated hepatic cholesterol, which led to a regression in hepatic steatosis. Taken together, our data demonstrate that Cyp8b1 inhibition is a viable therapeutic target of crucial interest for metabolic diseases, such as NAFLD.-Chevre, R., Trigueros-Motos, L., Castaño, D., Chua, T., Corlianò, M., Patankar, J. V., Sng, L., Sim, L., Juin, T. L., Carissimo, G., Ng, L. F. P., Yi, C. N. J., Eliathamby, C. C., Groen, A. K., Hayden, M. R., Singaraja, R. R. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice.


Subject(s)
Bile Acids and Salts/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Animals , Female , HEK293 Cells , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/therapy , RNAi Therapeutics , Steroid 12-alpha-Hydroxylase/metabolism
20.
Am J Physiol Endocrinol Metab ; 314(5): E418-E432, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29066462

ABSTRACT

Both type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH) are associated with reduced hepatic mitochondrial respiratory capacity. Cholic acid (CA) is the predominant 12α-hydroxylated bile acid that regulates hepatic lipid metabolism, and its circulating levels are negatively correlated with insulin resistance. Abolishing CA synthesis via the genetic disruption of the enzyme sterol 12α-hydroxylase ( Cyp8b1-/-) leads in resistance to diabetes and hepatic steatosis. Here, we show that long-term stimulation of hepatic lipogenesis leads to a severe impairment in overall metabolic and respiratory function in control mice ( Cyp8b1+/+) but strikingly not in Cyp8b1-/- mice. Cyp8b1-/- mice are protected from such metabolic impairments associated with T2D and NASH by inhibiting hepatic de novo lipogenic gene and protein expression and altering gut microbiota composition. The protective phenotype is compromised when NASH induction is independent of impairment in de novo lipogenesis (DNL). Consequently, Cyp8b1-/- mice also show a reduction in hepatic inflammation and fibrosis along with a shift in antimicrobial dynamics in the small intestine. Our data show that the altered bile acid composition of Cyp8b1-/- mice preserves metabolic and respiratory function by repressing hepatic DNL and driving favorable changes in gut antimicrobial responses.


Subject(s)
Gastrointestinal Microbiome/genetics , Host Microbial Interactions/genetics , Lipid Metabolism/genetics , Non-alcoholic Fatty Liver Disease/genetics , Steroid 12-alpha-Hydroxylase/genetics , Animals , Bile Acids and Salts/metabolism , Cells, Cultured , Energy Metabolism/genetics , Female , Gene Deletion , Insulin Resistance/genetics , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Respiratory Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...