Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 67(3): 207-212, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28744173

ABSTRACT

Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 µg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

2.
Pharmacol Rep ; 68(6): 1102-1110, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27588384

ABSTRACT

BACKGROUND: Epigenetic histone modifications are considered as a promising avenue for cancer preventive and therapeutic strategies. The purpose of this study was to evaluate the antiproliferative and histone deacetylase (HDAC) inhibitory activity of selected peanut phenolics, including p-coumaric acid, ferulic acid, sinapinic acid and resveratrol, in MCF-7 and HeLa cells. METHODS: The cytotoxic and HDAC inhibitory activities were assessed by MTT assays, flow cytometric analyses of cell cycle arrest and apoptosis induction, and western blotting. RESULTS: The results showed that all four phenolics inhibited proliferation of both MCF-7 and HeLa cells in a dose-dependent manner. Among the phenolics tested, resveratrol was the most effective in inhibiting growth of cancer cells. Treatment with all phenolics resulted in histone H3 hyperacetylation in both cell lines, indicating potential for HDAC inhibition. These phenolics induced apoptosis in both MCF-7 and HeLa cells in a concentration-dependent manner. Moreover, all phenolics induced G0/G1-phase arrest of the cell cycle in MCF-7 cells while p-coumaric and ferulic acids caused S-phase arrest in HeLa cells. Exposure to p-coumaric acid increased p53 and p21 expression but decreased CDK4 levels in both cell types, which could result in the observed G0/G1 arrest. Moreover, inhibition of ERK1/2 phosphorylation by ferulic acid and resveratrol contributed to cell growth inhibition. CONCLUSION: Peanut phenolics appear to influence the extent of histone acetylation in MCF-7 and HeLa cells, and this activity modulates multiple pathways that are implicated in cancer prevention.


Subject(s)
Arachis , Breast Neoplasms/enzymology , Cytotoxins/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Phenols/pharmacology , Uterine Cervical Neoplasms/enzymology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Breast Neoplasms/drug therapy , Chlorocebus aethiops , Cytotoxins/isolation & purification , Cytotoxins/therapeutic use , Dose-Response Relationship, Drug , Female , HeLa Cells , Histone Deacetylase Inhibitors/isolation & purification , Histone Deacetylase Inhibitors/therapeutic use , Humans , MCF-7 Cells , Phenols/isolation & purification , Phenols/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Vero Cells
3.
Biosci Biotechnol Biochem ; 79(11): 1771-8, 2015.
Article in English | MEDLINE | ID: mdl-26086399

ABSTRACT

This work revealed peanut seed prolamins likely displaying a defensive role besides the known nitrogen storage. Drought stress and proteomic approaches were used in varieties of peanuts to explore the prolamin member in association with a test against Aspergillus flavus spore germination. The stress effect was showed by aerial biomass, leaf content of malondialdehyde, and seed contamination by A. flavus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles were not informative for the antifungal polypeptides. From two-dimensional gel electrophoresis, the suspected polypeptides were those with pI 5.45-5.75 and sizes of 22.0-30.5 kDa specifically in Spanish-type peanuts. Regarding to the drought effect in most of these peanuts, the spot peak volume analysis deduced three novel prolamin-related antifungal polypeptides at pI 5.75-5.8 with 30.5, 27.5-28.5, and 22.0-22.5 kDa, which was confirmed after isoelectric purification at pH 5.60. The data could not yet conclude their correlation with resistance to drought and to seed infection by A. flavus.


Subject(s)
Arachis/genetics , Nitrogen/metabolism , Prolamins/metabolism , Stress, Physiological , Antifungal Agents , Arachis/chemistry , Aspergillus flavus/metabolism , Aspergillus flavus/pathogenicity , Droughts , Electrophoresis, Polyacrylamide Gel , Peptides , Prolamins/genetics , Proteomics , Seeds/chemistry
4.
Plant Foods Hum Nutr ; 70(2): 221-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25804251

ABSTRACT

The complete procedure for the production of inulin powder from Jerusalem artichoke tubers (JAT) was investigated. The procedure consists of isolation of inulin from JAT, elimination of color from the inulin extract and solidification. Washed tubers were first sliced, dried in a 60 °C oven for 10 h and then milled and sieved into a powder. Inulin was isolated from the JAT powder by hot water extraction using an accelerated solvent extractor (ASE). The effects of temperature and time for the extraction were investigated. The highest extraction efficiency was obtained at the extraction temperature of 80 °C for 20 min. The color of the extract was eliminated using ion exchange process with diethylaminoethyl cellulose as the sorbent. The inulin powder was subsequently obtained by freeze drying. Inulin content and inulin profiles were monitored to evaluate the efficiencies of the complete procedure. The inulin content was indirectly determined by spectrophotometry from free and total fructose measurements using potassium iodide. The inulin profile was monitored using high performance anion exchange chromatography equipped with integrated pulse amperometric detection (HPAEC-PAD). The proposed method provided the inulin production yield of 92.5%. The present procedure is fast, simple and effective for production of inulin powder from JAT. In addition, infrared spectra and some physico-chemical properties of the obtained inulin powder were determined and compared with the standard inulin.


Subject(s)
Helianthus/chemistry , Inulin/analysis , Plant Tubers/chemistry , Chemical Phenomena , Food Handling , Freeze Drying , Fructose/analysis , Hot Temperature , Hydrolysis , Plant Extracts/analysis , Powders
5.
Plants (Basel) ; 2(2): 302-16, 2013 Apr 29.
Article in English | MEDLINE | ID: mdl-27137377

ABSTRACT

Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011) yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides.

SELECTION OF CITATIONS
SEARCH DETAIL
...