Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 850: 158031, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35985586

ABSTRACT

The biodeterioration of cement-based materials in sewer environments occurs because of the production of sulfuric acid from the biochemical oxidation of H2S by sulfur-oxidizing bacteria (SOB). In the perspective of determining the possible reaction pathways for the sulfur cycle in such conditions, hydrated cementitious binders were exposed to an accelerated laboratory test (BAC test) to reproduce a biochemical attack similar to the one occurring in the sewer networks. Tetrathionate was used as a reduced sulfur source to naturally develop sulfur-oxidizing activities on the surfaces of materials. The transformation of tetrathionate was investigated on materials made from different binders: Portland cement, calcium aluminate cement, calcium sulfoaluminate cement and alkali-activated slag. The pH and the concentration of the different sulfur species were monitored in the leached solutions during 3 months of exposure. The results showed that the formation of different polythionates was independent of the nature of the material. The main parameter controlling the phenomena was the evolution of the pH of the leached solutions. Moreover, tetrathionate disproportionation was detected with the formation of more reduced forms of sulfur compounds (pentathionate, hexathionate and elemental sulfur) along with thiosulfate and sulfate. The experimental findings allowed numerical models to be developed to estimate the amount of sulfur compounds as a function of the pH evolution. In addition, biomass samples were collected from the exposed surface and from the deteriorated layers to identify the microbial populations. No clear influence of the cementitious materials on the selected populations was detected, confirming the previous results concerning the impact of the materials on the selected reaction pathways for tetrathionate transformation.


Subject(s)
Sulfur , Thiosulfates , Alkalies , Biofilms , Oxidation-Reduction , Sulfates/metabolism , Sulfur/metabolism , Sulfur Compounds , Sulfuric Acids
2.
J Environ Manage ; 300: 113735, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34521005

ABSTRACT

Concrete structures of anaerobic digestion plants face chemically aggressive conditions due to the contact with the complex liquid fraction of the fermenting biowaste. This paper aims to determine the biogeochemical dynamic interaction phenomena at play between the biowaste and cementitious matrices at the local scale, and to identify durable binders in such environments. Binder materials likely to show increased durability - slag and calcium aluminate cement, and a metakaolin-based alkali-activated geopolymer - and a reference Portland cement were inserted into sealed bioeactors during 5 cycles (245 days) of broken maize anaerobic digestion. Cementitious pastes suffered chemical and mineralogical alteration related mainly to carbonation and leaching. However, they had no negative impact on the bioprocess in terms of pH, metabolic evolution of volatile fatty acids and NH4+, planktonic microbial community composition or CH4 production. In all reactors, the microbial community was able to perform the anaerobic digestion successfully. The MKAA was only slightly altered in its outermost layer. Its presence in the biowaste induced lower NH4+ concentrations, a slightly higher pH and a marked shift in the microbial community, but CH4 total production was not affected. Substantial enrichment of acid forming bacteria, especially members of the genus Clostridium, was observed in the biofilm formed on all materials.


Subject(s)
Fatty Acids, Volatile , Zea mays , Anaerobiosis , Bacteria , Construction Materials
3.
Materials (Basel) ; 14(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540710

ABSTRACT

The biodeterioration of cementitious materials in sewer networks has become a major economic, ecological, and public health issue. Establishing a suitable standardized test is essential if sustainable construction materials are to be developed and qualified for sewerage environments. Since purely chemical tests are proven to not be representative of the actual deterioration phenomena in real sewer conditions, a biological test-named the Biogenic Acid Concrete (BAC) test-was developed at the University of Toulouse to reproduce the biological reactions involved in the process of concrete biodeterioration in sewers. The test consists in trickling a solution containing a safe reduced sulfur source onto the surface of cementitious substrates previously covered with a high diversity microbial consortium. In these conditions, a sulfur-oxidizing metabolism naturally develops in the biofilm and leads to the production of biogenic sulfuric acid on the surface of the material. The representativeness of the test in terms of deterioration mechanisms has been validated in previous studies. A wide range of cementitious materials have been exposed to the biodeterioration test during half a decade. On the basis of this large database and the expertise gained, the purpose of this paper is (i) to propose a simple and robust performance criterion for the test (standardized leached calcium as a function of sulfate produced by the biofilm), and (ii) to demonstrate the repeatability, reproducibility, and discriminability of the test method. In only a 3-month period, the test was able to highlight the differences in the performances of common cement-based materials (CEM I, CEM III, and CEM V) and special calcium aluminate cement (CAC) binders with different nature of aggregates (natural silica and synthetic calcium aluminate). The proposed performance indicator (relative standardized leached calcium) allowed the materials to be classified according to their resistance to biogenic acid attack in sewer conditions. The repeatability of the test was confirmed using three different specimens of the same material within the same experiment and the reproducibility of the results was demonstrated by standardizing the results using a reference material from 5 different test campaigns. Furthermore, developing post-testing processing and calculation methods constituted a first step toward a standardized test protocol.

4.
Sci Total Environ ; 750: 141518, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32871367

ABSTRACT

In order to promote the development of the biogas industry, solutions are needed to improve concrete structures durability in this environment. This multiphysics study aims to analyse the multiphases interactions between the liquid phase of an anaerobic digestion system and cementitious matrices, focusing on (i) the impacts of the binder nature on the anaerobic digestion process at local scale, and (ii) the deterioration mechanisms of the materials. Cementitious pastes made of slag cement (CEM III), innovative metakaolin-based alkali-activated material (MKAA), with compositions presumed to resist chemically aggressive media, and a reference binder, ordinary Portland cement (CEM I), were tested by immersion in inoculated cattle manure in bioreactors for a long period of five digestion cycles. For the first time it was shown that the digestion process was disturbed in the short term by the presence of the materials that increased the pH of the liquid phase and slowed the acids consumption, with much more impact of the MKAA. However, the final total production of biogas was similar in all bioreactors. Material analyses showed that, in this moderately aggressive medium, the biodeterioration of the CEM I and CEM III pastes mainly led to cement matrix leaching (decalcification) and carbonation. MKAA showed a good behaviour with very low degraded depths. In addition, the material was found to have interesting ammonium adsorption properties in the chemical conditions (notably the pH range) of anaerobic digestion.


Subject(s)
Bioreactors , Construction Materials , Alkalies , Anaerobiosis , Animals , Biofuels , Cattle
5.
Appl Environ Microbiol ; 85(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31126946

ABSTRACT

Several studies undertaken on the biodeterioration of concrete sewer infrastructures have highlighted the better durability of aluminate-based materials. The bacteriostatic effect of aluminum has been suggested to explain the increase in durability of these materials. However, no clear demonstration of the negative effect of aluminum on cell growth has been yet provided in the literature. In the present study, we sought to investigate the inhibitory potential of dissolved aluminum on nonsterile microbial cultures containing sulfur-oxidizing microorganisms. Both kinetic (maximum specific growth rate) and stoichiometric (oxygen consumption yield) parameters describing cells activity were accurately determined by using respirometry measurements coupled with modeled data obtained from fed-batch cultures run for several days at pH below 4 and with increasing total aluminum (Altot) concentrations from 0 to 100 mM. Short-term inhibition was observed for cells poorly acclimated to high salinity. However, inhibition was significantly attenuated for cells grown on mortar substrate. Moreover, after a rapid adaptation, and for an Altot concentration up to 100 mM, both kinetic and stoichiometric growth parameters remained similar to those obtained in control culture conditions where no aluminum was added. This argued in favor of the impact of ionic strength change on the growth of sulfur-oxidizing microorganism rather than an inhibitory effect of dissolved aluminum. Other assumptions must therefore be put forward in order to explain the better durability of cement containing aluminate-based materials in sewer networks. Among these assumptions, the influence of physical or chemical properties of the material (phase reactivity, porosity, etc.) might be proposed.IMPORTANCE Biodeterioration of cement infrastructures represents 5 to 20% of observed deteriorations within the sewer network. Such biodeterioration events are mainly due to microbial sulfur-oxidizing activity which produces sulfuric acid able to dissolve cementitious material. Calcium aluminate cement materials are more resistant to biodeterioration compared to the commonly used Portland cement. Several theories have been suggested to describe this resistance, and the bacteriostatic effect of aluminum seems to be the most plausible explanation. However, results reported by the several studies on this exact topic are highly controversial. This present study provides a comprehensive analysis of the influence of dissolved aluminum on growth parameters of long-term cultures of sulfur-oxidizing bacterial consortia sampled from different origins. Kinetic and stoichiometric parameters estimated by respirometry measurements and modeling showed that total dissolved-aluminum concentrations up to 100 mM were not inhibitory, but it is more likely that a sudden increase in the ionic strength affects cell growth. Therefore, it appears that the bacteriostatic effect of aluminum on microbial growth cannot explain the better durability of aluminate based cementitious materials.


Subject(s)
Aluminum/analysis , Bacteria/metabolism , Construction Materials/microbiology , Sulfur/metabolism , Corrosion , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...