Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981940

ABSTRACT

Anthracene (Anth) and pyrene (Pyr), two of the priority polycyclic aromatic hydrocarbons (PAHs), being lipophilic in nature, not only accumulate in animals, but also settle in the sediment of water bodies leading to continuous exposure for animals. Anth and Pyr when exposed to sunlight can be photoactivated and have harmful effects on aquatic organisms. A comparative analysis was carried out to assess the acute, sub-chronic, genetic and biochemical toxicity of Anth and Pyr in F. limnocharis tadpoles following short exposures to sunlight on a daily basis. In the bioaccumulation studies, it was found that both Anth and Pyr accumulated in the tadpole tissues in a concentration and time dependent manner. The LC50 values for Anth (under 15 min of daily sunlight exposure) were found to be 2.87, 2.59, 2.28, 1.80 mg/L at 24, 48, 72 and 96 h of the exposures. The corresponding LC50 values for Pyr were 1.03, 0.80, 0.62, 0.42 mg/L. Sublethal exposure of Anth and Pyr affected the survivality, time to metamorphosis as well as morphometric parameters under sunlight exposure. In the genotoxicity assessment studies, particularly the micronucleus test and comet assay, it was found that Pyr led to a higher incidence of micronucleus formation and DNA damage in comparison to Anth. The exposure to PAHs resulted in significant changes in the activity of antioxidant-mediated protective response, specifically the SOD activity, which varied between the groups treated with Anth and Pyr. On the other hand, Pyr treated group showed a higher level of GSH as compared to Anth treated groups. Moreover, the elevation in MDA level in the Anth and Pyr treated groups suggests an increase in lipid peroxidation. Future research should focus on understanding the ecotoxicological risk faced by anuran amphibia due to PAHs that frequently occur in aquatic environments and developing strategies to mitigate these risks.

2.
Environ Sci Pollut Res Int ; 27(17): 20962-20971, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32253698

ABSTRACT

Phenanthrene (PHE), a tricyclic polycyclic aromatic hydrocarbon (PAH), is ubiquitously found in aquatic environments. It is one of the major components in PAH mixtures. It has been identified as one of the 16 priority PAHs for toxicological evaluations. PHE is reported to induce lethal and sub-lethal toxicity in various aquatic indicator organisms. However, no toxicological data of PHE in anuran amphibians could be found. Amphibian larvae (tadpoles) develop in aquatic habitats. Therefore, exposure to PHE could negatively impact their development and fitness in later periods as they move in to the terrestrial habitat following metamorphosis. In the present study, we have analyzed the effects of PHE in Euphlyctis cyanophlyctis tadpoles. PHE induced concentration-dependent lethal effects in the tadpoles. The estimated LC50 values were 16.52, 15.29, 13.69, and 12.28 mg/L at 24, 48, 72, and 96 h of exposure respectively. These LC50 values are significantly higher than the reported environmental concentration of PHE. However, the strong negative correlation (R2 = 0.997, p < 0.001) between the LC50 value and exposure time indicates that longer exposure to lower concentration may cause significant lethal effects. Besides, PHE at environmentally relevant concentrations induced significant sub-lethal toxicities. Exposure to sub-lethal concentrations was found to be genotoxic in erythrocyte micronucleus as well as comet assays. Sub-lethal concentrations of PHE significantly increased superoxide dismutase activity and tissue glutathione level as well as induced lipid peroxidation. The present findings clearly indicate that PHE is a potential threat to the early life stages of amphibians. Further investigations are necessary to ascertain the implications of these early effects during adult life stages.


Subject(s)
Phenanthrenes , Water Pollutants, Chemical , Animals , Anura/genetics , Comet Assay , DNA Damage , Larva , Oxidative Stress
3.
Chemosphere ; 144: 1043-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26451654

ABSTRACT

Cadmium is released into the environment in increasing amounts from different natural and anthropogenic activities contaminating the aquatic habitats. Amphibian tadpoles develop in water and hence are likely to be adversely affected by cadmium present in the aquatic environment. We have studied the toxic and genotoxic effects of CdCl2 on the tadpoles of Rana limnocharis. CdCl2 in the concentration range between 0.1 and 0.4 mg/L induced significant mortality in R. limnocharis tadpoles in a dose and time dependent manner. The 10-day LC50 which has more ecological relevance was far less than the 24-h LC50. Tadpoles exposed to CdCl2 metamorphosed at an early age possibly as a survival strategy to move out of the stressful environment. The body weight of the CdCl2 exposed animals at metamorphosis was lower compared to the control individuals which may affect survival and reproductive fitness in adult life. Besides, the average body length of the metamorphosed individuals in the CdCl2 exposed group was higher than the control group. CdCl2 was found to be genotoxic in micronucleus test and comet assay. The ambient concentration of Cd could reach up to 60 µg/L or more. Exposure to 18.5 µg/L of CdCl2 (1% of 24-h LC50) induced significant increase in DNA strand breaks as compared to the control. The present findings demonstrate that presence of cadmium in the aquatic environment can significantly alter the life history traits and cause DNA damage in amphibians and hence, could contribute towards their population decline.


Subject(s)
Anura , Cadmium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura/genetics , Anura/growth & development , Cadmium Chloride/toxicity , Comet Assay , DNA Damage , Dose-Response Relationship, Drug , Larva/drug effects , Life Cycle Stages/drug effects , Metamorphosis, Biological/drug effects , Micronucleus Tests , Mutagens/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...