Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0236616, 2020.
Article in English | MEDLINE | ID: mdl-33044964

ABSTRACT

Asexual blood stages of the malaria parasite are readily amenable to genetic modification via homologous recombination, allowing functional studies of parasite genes that are not essential in this part of the life cycle. However, conventional reverse genetics cannot be applied for the functional analysis of genes that are essential during asexual blood-stage replication. Various strategies have been developed for conditional mutagenesis of Plasmodium, including recombinase-based gene deletion, regulatable promoters, and mRNA or protein destabilization systems. Among these, the dimerisable Cre (DiCre) recombinase system has emerged as a powerful approach for conditional gene deletion in P. falciparum. In this system, the bacteriophage Cre is expressed in the form of two separate, enzymatically inactive polypeptides, each fused to a different rapamycin-binding protein. Rapamycin-induced heterodimerization of the two components restores recombinase activity. We have implemented the DiCre system in the rodent malaria parasite P. berghei, and show that rapamycin-induced excision of floxed DNA sequences can be achieved with very high efficiency in both mammalian and mosquito parasite stages. This tool can be used to investigate the function of essential genes not only in asexual blood stages, but also in other parts of the malaria parasite life cycle.


Subject(s)
Gene Deletion , Gene Editing , Genes, Protozoan/genetics , Integrases/metabolism , Malaria/parasitology , Mutagenesis , Plasmodium berghei/genetics , Animals , Female , Integrases/chemistry , Integrases/genetics , Life Cycle Stages , Malaria/genetics , Malaria/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...