Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 30(11): 1610-1618, 2021 11.
Article in English | MEDLINE | ID: mdl-32939877

ABSTRACT

BACKGROUND: This is a study about the skin ageing exposome, focusing on the effect of cigarette smoke. Human living skin explants (HSE) were exposed to cigarette smoke (CS) of two cigarettes for 2 hours using a custom-made exposure chamber, the Pollubox® . Effects on the surface physico-chemistry and molecular properties of the skin were analyzed and reported for the first time. BASIC PROCEDURES: To this end, transcriptomic study followed by immunohistochemistry, MDA (Malondialdehyde Dosage), and surface physio-chemistry data: surface free energy determination, TEWL (Trans Epidermal Water Loss), skin pH and FT-IR (Fourier Transform-Infrared) spectroscopy of the explant were collected from untreated and treated HSE. MAIN FINDINGS: Results showed a decrease of the total surface free energy of the treated HSE. This decrease reflected higher interactions with polar compounds from the environment and consequently a decrease of the surface hydrophobicity. Additionally, an increase of TEWL and skin pH was observed after treatment. The transcriptomic analysis showed downregulation of mitochondrial genes (PON2-NDUFA4L2-ATP1A1-ALDH2-PRODH) combined with an increase of MDA in CS-treated HSE. CONCLUSIONS: CS-induced oxidation of lipids at HSE surface alters the skin barrier: interactions with polar products are enhanced and the lipid chain packing at the surface is modified. Consequently, skin permeability could increase which correlated with repression of CA9 and AQP1 genes. Beside activation of AHR-NRF2 pathway in CS-exposed HSE, our results suggested that mitochondrial functions were strongly impacted and oxidized lipids failed to be eliminated promoting skin barrier alteration. A mitophagy activity was suggested through the confirmation of PINK1 accumulation in the epidermis by immunostaining.


Subject(s)
Chemical Phenomena , Skin Physiological Phenomena , Smoke , Tobacco Products , Humans , In Vitro Techniques , Skin
2.
Toxicol In Vitro ; 65: 104822, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32151702

ABSTRACT

The skin covers almost the entire body and plays an important role in detoxification and elimination of xenobiotics. These processes are initiated following the binding of xenobiotics to the aryl hydrocarbon receptor (AhR), which leads to the expression of several detoxification enzymes. To gain some insights on their impacts on skin cells over time, a temporal transcriptional analysis using gene expression arrays was performed in human primary epidermal keratinocyte (HEK) cells exposed for 6, 24 and 48 h to ß-naphthoflavone (ßNF), a potent agonist of AhR. Our results demonstrated that expression of genes related to xenobiotic, inflammation, and extracellular matrix remodeling was increased upon ßNF treatment from 6 h onwards. In contrast, the anti-oxidative response was seen mainly starting at 24 h. While some of the genes controlled by the epidermal differentiation complex was induced as soon as 6 h, expression of most of the S100 related genes located within the same chromosomal locus and keratin genes was increased at later times (24 and 48 h). Altogether our transcriptomic data highlight that following ßNF exposure, HEK cells elicited a protective xenobiotic response together with the activation of inflammation and keratinocyte regeneration. Later on these processes were followed by the stimulation of anti-oxidant activity and terminal differentiation.


Subject(s)
Environmental Pollutants/pharmacology , Keratinocytes/drug effects , Transcriptome/drug effects , Xenobiotics/pharmacology , beta-Naphthoflavone/pharmacology , Cell Line , Cell Survival/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Keratinocytes/metabolism , Skin/drug effects , Skin/metabolism
3.
Proteomics ; 7(5): 769-80, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17295352

ABSTRACT

An increased risk for multiple sclerosis and schizophrenia is observed at increasing latitude and in patients born in winter or spring. To explore a possible link between maternal vitamin D deficiency and these brain disorders, we examined the impact of prenatal hypovitaminosis D on protein expression in the adult rat brain. Vitamin D-deficient female rats were mated with vitamin D normal males. Pregnant females were kept vitamin D-deficient until birth whereupon they were returned to a control diet. At week 10, protein expression in the progeny's prefrontal cortex and hippocampus was compared with control animals using silver staining 2-D gels associated with MS and newly devised data mining software. Developmental vitamin D (DVD) deficiency caused a dysregulation of 36 brain proteins involved in several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, PTMs, synaptic plasticity and neurotransmission. A computational analysis of these data revealed that (i) nearly half of the molecules dysregulated in our animal model have also been shown to be misexpressed in either schizophrenia and/or multiple sclerosis and (ii) an impaired synaptic network may be a consequence of mitochondrial dysfunction.


Subject(s)
Brain/metabolism , Mental Disorders/metabolism , Nervous System Diseases/metabolism , Protein Biosynthesis/physiology , Proteins/genetics , Vitamin D Deficiency/metabolism , Animals , Female , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...