Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Cancers (Basel) ; 16(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38398180

ABSTRACT

Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is often the only source of tumor tissue from patients with advanced, inoperable lung cancer. EBUS-TBNA aspirates are used for the diagnosis, staging, and genomic testing to inform therapy options. Here we extracted DNA and RNA from 220 EBUS-TBNA aspirates to evaluate their suitability for whole genome (WGS), whole exome (WES), and comprehensive panel sequencing. For a subset of 40 cases, the same nucleic acid extraction was sequenced using WGS, WES, and the TruSight Oncology 500 assay. Genomic features were compared between sequencing platforms and compared with those reported by clinical testing. A total of 204 aspirates (92.7%) had sufficient DNA (100 ng) for comprehensive panel sequencing, and 109 aspirates (49.5%) had sufficient material for WGS. Comprehensive sequencing platforms detected all seven clinically reported tier 1 actionable mutations, an additional three (7%) tier 1 mutations, six (15%) tier 2-3 mutations, and biomarkers of potential immunotherapy benefit (tumor mutation burden and microsatellite instability). As expected, WGS was more suited for the detection and discovery of emerging novel biomarkers of treatment response. WGS could be performed in half of all EBUS-TBNA aspirates, which points to the enormous potential of EBUS-TBNA as source material for large, well-curated discovery-based studies for novel and more effective predictors of treatment response. Comprehensive panel sequencing is possible in the vast majority of fresh EBUS-TBNA aspirates and enhances the detection of actionable mutations over current clinical testing.

2.
Front Oncol ; 13: 1259882, 2023.
Article in English | MEDLINE | ID: mdl-37927461

ABSTRACT

Introduction: Tumour Mutation Burden (TMB) is a potential biomarker for immune cancer therapies. Here we investigated parameters that might affect TMB using duplicate cytology smears obtained from endobronchial ultrasound transbronchial needle aspiration (EBUS TBNA)-sampled malignant lymph nodes. Methods: Individual Diff-Quik cytology smears were prepared for each needle pass. DNA extracted from each smear underwent sequencing using large gene panel (TruSight Oncology 500 (TSO500 - Illumina)). TMB was estimated using the TSO500 Local App v. 2.0 (Illumina). Results: Twenty patients had two or more Diff-Quik smears (total 45 smears) which passed sequencing quality control. Average smear TMB was 8.7 ± 5.0 mutations per megabase (Mb). Sixteen of the 20 patients had paired samples with minimal differences in TMB score (average difference 1.3 ± 0.85). Paired samples from 13 patients had concordant TMB (scores below or above a threshold of 10 mutations/Mb). Markedly discrepant TMB was observed in four cases, with an average difference of 11.3 ± 2.7 mutations/Mb. Factors affecting TMB calling included sample tumour content, the amount of DNA used in sequencing, and bone fide heterogeneity of node tumour between paired samples. Conclusion: TMB assessment is feasible from EBUS-TBNA smears from a single needle pass. Repeated samples of a lymph node station have minimal variation in TMB in most cases. However, this novel data shows how tumour content and minor change in site of node sampling can impact TMB. Further study is needed on whether all node aspirates should be combined in 1 sample, or whether testing independent nodes using smears is needed.

3.
Cancer Cytopathol ; 131(6): 373-382, 2023 06.
Article in English | MEDLINE | ID: mdl-36938641

ABSTRACT

BACKGROUND: Cytology smears are commonly collected during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS TBNA) procedures but are rarely used for molecular testing. Studies are needed to demonstrate their great potential, in particular for the prediction of malignant cell DNA content and for utility in molecular diagnostics using large gene panels. METHODS: A prospective study was performed on samples from 66 patients with malignant lymph nodes who underwent EBUS TBNA. All patients had air-dried, Diff-Quik cytology smears and formalin-fixed, paraffin-embedded cell blocks collected for cytopathology and molecular testing. One hundred eighty-five smears were evaluated by microscopy to estimate malignant cell percentage and abundance and to calculate smear size and were subjected to DNA extraction. DNA from 56 smears from 27 patients was sequenced with the TruSight Oncology 500 assay (Illumina). RESULTS: Each microscopy parameter had a significant effect on the DNA yield. An algorithm was developed that predicted a >50-ng DNA yield of a smear with an area under the curve of 0.86. Fifty DNA samples (89%) with varying malignant yields were successfully sequenced. Low-malignant-cell content (<25%) and smear area (<15%) were the main reasons for failure. All standard-of-care mutations were detected in replicate smears from individual patients, regardless of malignant cell content. Tier 1/2 mutations were discovered in two cases where standard-of-care specimens were inadequate for sequencing. Smears were scored for tumor mutation burden. CONCLUSIONS: Microscopy of Diff-Quik smears can triage samples for comprehensive panel sequencing, which highlights smears as an excellent alternative to traditional testing with cell blocks.


Subject(s)
Lung Neoplasms , Humans , Prospective Studies , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Mutation , Lymph Nodes/pathology
4.
Leukemia ; 37(4): 741-750, 2023 04.
Article in English | MEDLINE | ID: mdl-36739348

ABSTRACT

Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Mice , Disease Models, Animal , fms-Like Tyrosine Kinase 3/genetics , Gene Duplication , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Transgenic , Mutation
5.
Cell Rep Methods ; 2(11): 100323, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36452869

ABSTRACT

Researching the murine epigenome in disease models has been hampered by the lack of appropriate and cost-effective DNA methylation arrays. Here we perform a comprehensive, comparative analysis between the Mouse Methylation BeadChip (MMB) and reduced-representation bisulfite sequencing (RRBS) in two murine models of colorectal carcinogenesis. We evaluate the coverage, variability, and ability to identify differential DNA methylation of RRBS and MMB. We show that MMB is an effective tool for profiling the murine methylome that performs comparably with RRBS, identifying similar differentially methylated pathways. Although choice of technology is experiment dependent and will be predicated on the underlying biology being probed, these analyses provide insights into the relative strengths and weaknesses of each approach.


Subject(s)
DNA Methylation , Sulfites , Animals , Mice , DNA Methylation/genetics , Sequence Analysis, DNA , Epigenome
6.
Genome Med ; 14(1): 58, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637530

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Genomics , Humans , Lung Neoplasms/genetics , Mesothelioma/genetics , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Tumor Microenvironment/genetics
7.
Blood Rev ; 56: 100969, 2022 11.
Article in English | MEDLINE | ID: mdl-35570070

ABSTRACT

Broad activation of host T-cell immunity by immune checkpoint blockade, has revolutionized the treatment of some but not all B-cell lymphoproliferative disorders (LPDs). The challenge for next generation immunotherapeutics, is to successfully induce anti-tumor specific T-cell immunity across a range of B-LPDs, without provoking immune-related adverse events. An emerging strategy is to target neoantigens. Neoantigens are immunogenic peptides, unique to malignant cells, that are presented to T-cells via human leukocyte antigens. Neoantigens most commonly arise from non-synonymous mutations but can also be derived from tumor specific alterations along the protein biosynthesis pathway. B-cell LPDs uniquely express a clonal B-cell receptor (BCR) idiotype, consisting of immunoglobulin genes that undergo recombination and somatic hypermutation. Notably, the BCR idiotype can also give rise to 'immunoglobulin neoantigens'. Here, we provide an overview of current strategies to identify and validate immunoglobulin and non-immunoglobulin neoantigens as well as summarizing studies investigating neoantigens within B-cell LPDs.


Subject(s)
Lymphoproliferative Disorders , Neoplasms , Humans , Antigens, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms/therapy , Peptides , Immunologic Factors , HLA Antigens , Receptors, Antigen, B-Cell/genetics
8.
Genome Med ; 14(1): 3, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012638

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models. METHODS: Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC. RESULTS: PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature. CONCLUSIONS: EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents.


Subject(s)
Antineoplastic Agents , Endometrial Neoplasms , Antineoplastic Agents/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Genomics , Heterografts , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
9.
Bioinform Adv ; 2(1): vbac005, 2022.
Article in English | MEDLINE | ID: mdl-36699384

ABSTRACT

Motivation: Changes in telomere length have been observed in cancer and can be indicative of mechanisms involved in carcinogenesis. Most methods used to estimate telomere length require laboratory analysis of DNA samples. Here, we present qmotif, a fast and easy tool that determines telomeric repeat sequences content as an estimate of telomere length directly from whole-genome sequencing. Results: qmotif shows similar results to quantitative PCR, the standard method for high-throughput clinical telomere length quantification. qmotif output correlates strongly with the output of other tools for determining telomere sequence content, TelSeq and TelomereHunter, but can run in a fraction of the time-usually under a minute. Availability and implementation: qmotif is implemented in Java and source code is available at https://github.com/AdamaJava/adamajava, with instructions on how to build and use the application available from https://adamajava.readthedocs.io/en/latest/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Cancer Epidemiol Biomarkers Prev ; 30(9): 1669-1680, 2021 09.
Article in English | MEDLINE | ID: mdl-34162658

ABSTRACT

BACKGROUND: Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS: We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS: We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS: The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT: This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.


Subject(s)
Autophagy-Related Protein-1 Homolog , Carcinoma, Ovarian Epithelial/genetics , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms/genetics , Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/mortality , Female , Gene Knockout Techniques , Genome-Wide Association Study , Humans , Ovarian Neoplasms/mortality , Polymorphism, Single Nucleotide , Progression-Free Survival
11.
JAMA Dermatol ; 157(7): 836-841, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34076666

ABSTRACT

IMPORTANCE: Spitz nevi are benign melanocytic neoplasms that classically present in childhood. Isolated Spitz nevi have been associated with oncogenic gene fusions in approximately 50% of cases. The rare agminated variant of Spitz nevi, thought to arise from cutaneous genetic mosaicism, is characterized by development of clusters of multiple lesions in a segmental distribution, which can complicate surgical removal. Somatic single-nucleotide variants in the HRAS oncogene have been described in agminated Spitz nevi, most of which were associated with an underlying nevus spilus. The use of targeted medical therapy for agminated Spitz nevi is not well understood. OBSERVATIONS: A girl aged 30 months presented with facial agminated Spitz nevi that recurred rapidly and extensively after surgery. Owing to the morbidity of further surgery, referral was made to a molecular tumor board. The patient's archival nevus tissue was submitted for extended immunohistochemical analysis and genetic sequencing. Strong ROS1 protein expression was identified by immunohistochemistry. Consistent with this, analysis of whole-genome sequencing data revealed GOPC-ROS1 fusions. These results indicated likely benefit from the oral tyrosine kinase inhibitor crizotinib, which was administered at a dosage of 280 mg/m2 twice daily. An excellent response was observed in all lesions within 5 weeks, with complete flattening after 20 weeks. CONCLUSIONS AND RELEVANCE: Given the response following crizotinib treatment observed in this case, the kinase fusion was believed to be functionally consequential in the patient's agminated Spitz nevi and likely the driver mutational event for growth of her nevi. The repurposing of crizotinib for GOPC-ROS1 Spitz nevi defines a new treatment option for these lesions, particularly in cases for which surgery is relatively contraindicated.


Subject(s)
Crizotinib , Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Adaptor Proteins, Signal Transducing , Child, Preschool , Crizotinib/therapeutic use , Female , Golgi Matrix Proteins , Humans , Neoplasm Recurrence, Local , Nevus, Epithelioid and Spindle Cell/diagnosis , Nevus, Epithelioid and Spindle Cell/drug therapy , Nevus, Epithelioid and Spindle Cell/genetics , Protein-Tyrosine Kinases , Proto-Oncogene Proteins/genetics , Skin Neoplasms/diagnosis , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics
12.
Commun Biol ; 4(1): 155, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536587

ABSTRACT

Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , DNA Methylation , Epigenesis, Genetic , Epigenome , Pancreatic Neoplasms/genetics , Carcinoma, Neuroendocrine/metabolism , Epigenomics , Genetic Predisposition to Disease , Humans , Neoplasm Grading , Pancreatic Neoplasms/pathology , Phenotype , Tumor Burden
13.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Article in English | MEDLINE | ID: mdl-33439897

ABSTRACT

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Subject(s)
Genetic Vectors/administration & dosage , Immunity, Innate/immunology , Injection Site Reaction/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccinia/immunology , Zika Virus Infection/immunology , Animals , Female , Genetic Vectors/genetics , Genome, Viral , Mice , Mice, Inbred C57BL , RNA-Seq , Vaccines, Synthetic/immunology , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/isolation & purification , Vaccinology , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
14.
Nat Commun ; 11(1): 5259, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067454

ABSTRACT

To increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1. Mutations and amplification of KIT are also common. Structural rearrangement and copy number signatures show that whole genome duplication, aneuploidy and complex rearrangements are common. Complex rearrangements occur recurrently and are associated with amplification of TERT, CDK4, MDM2, CCND1, PAK1 and GAB2, indicating potential therapeutic options.


Subject(s)
Melanoma/genetics , Skin Neoplasms/genetics , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Amplification , Gene Dosage , Genomics , Humans , Male , Melanoma/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Oxidoreductases/genetics , Oxidoreductases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Skin Neoplasms/metabolism , Whole Genome Sequencing
15.
Cancers (Basel) ; 12(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053644

ABSTRACT

Next generation sequencing (NGS) describes the technical revolution that enabled massively parallel sequencing of fragmented nucleic acids, thus making possible our current genomic understanding of cancers [...].

16.
Cancers (Basel) ; 12(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384699

ABSTRACT

BACKGROUND: WNT activation is a hallmark of colorectal cancer. BRAF mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in BRAF mutant cancers. METHODS: we performed exome-sequencing on 24 BRAF mutant colorectal cancers and analyzed these data in combination with 175 publicly available BRAF mutant colorectal cancer exomes. We assessed the somatic mutational landscape of WNT signaling regulators, and performed hotspot and driver mutation analyses to identify potential drivers of WNT signaling. The effects of Apc and Braf mutation were modelled, in vivo, using the Apcmin/+ and BrafV637/Villin-CreERT2/+ mouse, respectively. RESULTS: RNF43 was the most frequently mutated WNT signaling regulator (41%). Mutations in the beta-catenin destruction complex occurred in 48% of cancers. Hotspot analyses identified potential cancer driver genes in the WNT signaling cascade, including MEN1, GNG12 and WNT16. Truncating APC mutation was identified in 20.8% of cancers. Truncating APC mutation was associated with early age at diagnosis (p < 2 × 10-5), advanced stage (p < 0.01), and poor survival (p = 0.026). Apcmin/+/BrafV637 animals had more numerous and larger SI and colonic lesions (p < 0.0001 and p < 0.05, respectively), and a markedly reduced survival (median survival: 3.2 months, p = 8.8 × 10-21), compared to animals with Apc or Braf mutation alone. CONCLUSIONS: the WNT signaling axis is frequently mutated in BRAF mutant colorectal cancers. WNT16 and MEN1 may be novel drivers of aberrant WNT signaling in colorectal cancer. Co-mutation of BRAF and APC generates an extremely aggressive neoplastic phenotype that is associated with poor patient outcome.

17.
Clin Cancer Res ; 26(17): 4569-4580, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32414751

ABSTRACT

PURPOSE: The two most common molecular subtypes of endometrial cancers, mismatch repair deficient (MMRd) and p53 wild-type (p53wt) comprise the majority of endometrial cancers and have intermediate prognoses where additional risk stratification biomarkers are needed. Isoform switching of FGFR2 from FGFR2b to FGFR2c (normally expressed in mesenchymal cells), has been reported in other solid carcinomas. The objective of this study was to investigate the role of FGFR2c in risk stratification of endometrial cancer. EXPERIMENTAL DESIGN: We have developed and optimized a BaseScope RNA ISH assay to detect FGFR2c. FGFR2c expression was determined in a preliminary screening cohort of 78 endometrial cancers and a clinically and molecularly annotated Vancouver cohort (n = 465). Cox regression model analyses were performed to assess the prognostic value of FGFR2c. RESULTS: Univariate and multivariate analyses revealed FGFR2c expression was significantly associated with shorter disease-specific survival (DSS) and progression-free survival (PFS) in endometrioid endometrial cancer (EEC, n = 302). Notably, FGFR2c expression was significantly associated with shorter PFS and DSS in patients with grade 3 EECs (P < 0.003 and P < 0.002) and the European Society Medical Oncology (ESMO) high-risk group (P < 0.0001 and P < 0.002), respectively. Moreover, within the MMRd subtype, FGFR2c expression was significantly associated with shorter PFS (P < 0.048) and DSS (P < 0.001). CONCLUSIONS: FGFR2c expression appears an independent prognostic biomarker in patients with EEC and further discerns the outcomes within grade 3 tumors, ESMO high-risk groups, as well as within the MMRd and p53wt subtypes. FGFR2c inclusion into future molecular subtyping can further refine risk stratification of EEC.


Subject(s)
Biomarkers, Tumor/metabolism , Endometrial Neoplasms/mortality , Endometrium/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Aged , Biomarkers, Tumor/genetics , DNA Mismatch Repair , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/surgery , Endometrium/surgery , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Hysterectomy , Middle Aged , Neoplasm Staging , Prognosis , Progression-Free Survival , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Risk Assessment
18.
Neoplasia ; 22(2): 120-128, 2020 02.
Article in English | MEDLINE | ID: mdl-31935636

ABSTRACT

The serrated neoplasia pathway gives rise to a distinct subgroup of colorectal cancers distinguished by the presence of mutant BRAFV600E and the CpG Island Methylator Phenotype (CIMP). BRAF mutant CRC are commonly associated with microsatellite instability, which have an excellent clinical outcome. However, a proportion of BRAF mutant CRC retain microsatellite stability and have a dismal prognosis. The molecular drivers responsible for the development of this cancer subgroup are unknown. To address this, we established a murine model of BRAFV600E mutant microsatellite stable CRC and comprehensively investigated the exome and transcriptome to identify molecular alterations in signaling pathways that drive malignancy. Exome sequencing of murine serrated lesions (mSL) and carcinomas identified frequent hot spot mutations within the gene encoding ß-catenin (Ctnnb1). Immunohistochemical staining of ß-catenin indicated that these mutations led to an increase in the presence of aberrant nuclear ß-catenin that resulted in gene expression changes in targets of ß-catenin transcription. Gene expression profiling identified a significant enrichment for transforming growth factor-ß (TGF-ß) signaling that was present in mSL and carcinomas. Early activation of TGF-ß suggests that this pathway may be an early cue directing mSL to microsatellite stable carcinoma. These findings in the mouse model support the importance of alterations in WNT and TGF-ß signaling during the transition of human sessile serrated lesions to malignancy.


Subject(s)
Colorectal Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Transforming Growth Factor beta/genetics , beta Catenin/genetics , Animals , Colorectal Neoplasms/pathology , CpG Islands/genetics , DNA Methylation/genetics , Disease Models, Animal , Humans , Mice , Microsatellite Instability , Microsatellite Repeats/genetics , Mutation/genetics , Exome Sequencing , Wnt Signaling Pathway/genetics
19.
Melanoma Res ; 29(5): 483-490, 2019 10.
Article in English | MEDLINE | ID: mdl-31464824

ABSTRACT

Germline mutations of BRCA1 and BRCA2 predispose individuals to a high risk of breast and ovarian cancer, and elevated risk of other cancers, including those of the pancreas and prostate. BRCA2 mutation carriers may have increased risk of uveal melanoma (UM) and cutaneous melanoma (CM), but associations with these cancers in BRCA1 mutation carriers have been mixed. Here, we further assessed whether UM and CM are associated with BRCA1 or BRCA2 by assessing the presence, segregation and reported/predicted pathogenicity of rare germline mutations (variant allele frequency < 0.01) in families with multiple members affected by these cancers. Whole-genome or exome sequencing was performed on 160 CM and/or UM families from Australia, the Netherlands, Denmark and Sweden. Between one and five cases were sequenced from each family, totalling 307 individuals. Sanger sequencing was performed to validate BRCA1 and BRCA2 germline variants and to assess carrier status in other available family members. A nonsense and a frameshift mutation were identified in BRCA1, both resulting in premature truncation of the protein (the first at p.Q516 and the second at codon 91, after the introduction of seven amino acids due to a frameshift deletion). These variants co-segregated with CM in individuals who consented for testing and were present in individuals with pancreatic, prostate and breast cancer in the respective families. In addition, 33 rare missense mutations (variant allele frequency ranging from 0.00782 to 0.000001 in the aggregated ExAC data) were identified in 34 families. Examining the previously reported evidence of functional consequence of these variants revealed all had been classified as either benign or of unknown consequence. Seeking further evidence of an association between BRCA1 variants and melanoma, we examined two whole-genome/exome sequenced collections of sporadic CM patients (total N = 763). We identified one individual with a deleterious BRCA1 variant, however, this allele was lost (with the wild-type allele remaining) in the corresponding CM, indicating that defective BRCA1 was not a driver of tumorigenesis in this instance. Although this is the first time that deleterious BRCA1 mutations have been described in high-density CM families, we conclude that there is an insufficient burden of evidence to state that the increased familial CM or UM susceptibility is because of these variants. In addition, in conjunction with other studies, we conclude that the previously described association between BRCA2 mutations and UM susceptibility represents a rare source of increased risk.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Germ-Line Mutation , Melanoma/genetics , Skin Neoplasms/genetics , Uveal Neoplasms/genetics , Alleles , Australia , Computational Biology , Denmark , Exome , Female , Frameshift Mutation , Gene Deletion , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Netherlands , Sweden , Whole Genome Sequencing , Melanoma, Cutaneous Malignant
20.
Nat Commun ; 10(1): 3163, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320640

ABSTRACT

Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2. Significantly mutated genes are NRAS, BRAF, NF1, KIT, SF3B1, TP53, SPRED1, ATRX, HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors.


Subject(s)
Biomarkers, Tumor/genetics , Melanoma/genetics , Point Mutation/genetics , Cyclin-Dependent Kinase 4/genetics , DNA Copy Number Variations/genetics , Female , Humans , Male , Melanocytes/pathology , Melanoma/pathology , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/genetics , Telomerase/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...