Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(6): 659, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37166583

ABSTRACT

Rare earth elements (REE) have unique chemical properties, which allow their use as geochemical tracers. In this context, the present study aims to assess the role of Funil Reservoir on REE biogeochemical behavior. We collected water samples upstream of the reservoir (P-01) in the city of Queluz, inside the reservoir (P-02), and downstream of Funil Reservoir (P-03) in the city of Itatiaia, RJ. In the field, physicochemical parameters were measured using a probe (pH, temperature, electrical conductivity, and dissolved oxygen). In the laboratory, water samples were filtered (0.45 µm) and properly packed until chemical analysis. Chlorophyll a concentrations were determined by a spectrophotometric method and suspended particulate matter (SPM) by a gravimetric method. Ionic concentrations were determined by ion chromatography technique and REE concentrations were determined by ICP-MS. Chlorophyll a concentrations were higher in Funil Reservoir. Ionic concentrations in Queluz (P-01) suggest anthropic contamination. The sum of REE in the dissolved fraction ranged from 2.12 to 12.22 µg L-1. A positive anomaly of La in Queluz indicates anthropic contamination. The observed patterns indicate that Funil Reservoir acts as a biogeochemical barrier, modifying the fluvial transport of REE. Nonetheless, another factor that probably influences REE behavior is the algal bloom that occurs in reservoirs during the rainy season. The seasonal behavior of algae can influence REE biogeochemistry through the incorporation and release of trace metals.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Chlorophyll A/analysis , Brazil , Environmental Monitoring , Metals, Rare Earth/analysis , Water/analysis , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 126: 275-280, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29421098

ABSTRACT

A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm-2yr-1) and after three decades of deforestation (59.7±7.2gm-2yr-1). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (<400) and C:N (~20) molar ratios, as well as increased nutrient accumulation, reflect the dominance of phytoplankton-derived organic matter after deforestation, resulting in less-efficient sedimentary carbon sinks. These results indicate that the organic material deposited from eutrophication may not compensate mangrove deforestation losses on carbon accumulation in mangrove ecosystems.


Subject(s)
Carbon Sequestration , Conservation of Natural Resources , Eutrophication , Wetlands , Bays , Carbon/analysis , Ecosystem , Geologic Sediments/analysis
4.
J Environ Radioact ; 99(8): 1329-34, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18490087

ABSTRACT

Concentrations of fertilizer industry-derived P (up to 3.4%), Ca (up to 6.1%), (226)Ra (up to 744 Bq kg(-1)) and (210)Pb (up to 1317 Bq kg(-1)) at least one order of magnitude above natural levels were recorded in a sediment core from Morrão River estuary (SE Brazil). Unsupported (210)Pb (= total (210)Pb-(226)Ra) activities unexplained by atmospheric fallout and deviations from the radionuclides secular equilibrium also indicated strong anomalies. Anomalous constituents were positively correlated with each other and negatively correlated with clay mineral-bearing elements. These negative correlations were explained by a depletion of natural sediment constituents due to a dilution caused by elevated inputs of steel industry-derived elements (mainly by Fe levels up to 24%). Absolute data and normalizations by a proxy for clays (Al) and anthropogenic Fe evidenced variabilities in the quality of coastal and land-derived sediment inputs, mainly due to changes in the relative contributions from industrial sources.


Subject(s)
Geologic Sediments/chemistry , Water Pollutants, Radioactive/analysis , Calcium/analysis , Fertilizers , Lead Radioisotopes/analysis , Phosphorus/analysis , Radon/analysis
5.
Environ Pollut ; 85(3): 259-64, 1994.
Article in English | MEDLINE | ID: mdl-15091655

ABSTRACT

The Jacarepaguá lagoon receives the waste from 239 industries and domestic sewage. Bottom sediment analysis revealed that metal pollution is not spread over the lagoons but restricted to the discharge areas of the main metal-carrier rivers. Metal concentrations in superficial water showed the following concentrations values in ng/ml: Zn, 9.63+/-3.59; Pb, 0.61+/-0.43; Cu, 0.94+/-0.45; Mn, 12.7+/-8.0. Metal concentration in fish (average of seven different species) presented the following results, in mg/kg wet weight: Cr, 0.08+/-0.01; Cu, 0.4+/-0.15; Zn, 4.6+/-3.4; Fe, 2.4+/-1.3; Mn, 0.4+/-0.3. These results imply, considering fish consumption rate and the RfD (USEPA Reference Dose), that the local population is not exposed to undue health risks. Metal concentrations in the water may, however, increase due to their dissolution induced by pH and redox changes in the sediments.

SELECTION OF CITATIONS
SEARCH DETAIL
...