Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Curr Neuropharmacol ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37622689

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.

2.
Mol Psychiatry ; 28(7): 2946-2963, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37131076

ABSTRACT

While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.


Subject(s)
Conditioning, Psychological , Parvalbumins , Mice , Animals , Parvalbumins/metabolism , Down-Regulation , Conditioning, Psychological/physiology , Memory/physiology , Fear/physiology , Mice, Knockout , Extinction, Psychological/physiology
3.
Neurochem Res ; 48(8): 2580-2594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37069415

ABSTRACT

Chronic alcohol use disorder, a major risk factor for the development of neuropsychiatric disorders including addiction to other substances, is associated with several neuropathology including perturbed neuronal and glial activities in the brain. It affects carbon metabolism in specific brain regions, and perturbs neuro-metabolite homeostasis in neuronal and glial cells. Alcohol induced changes in the brain neurochemical profile accompany the negative emotional state associated with dysregulated reward and sensitized stress response to withdrawal. However, the underlying alterations in neuro-astroglial activities and neurochemical dysregulations in brain regions after chronic alcohol use are poorly understood. This study evaluates the impact of chronic ethanol use on the regional neuro-astroglial metabolic activity using 1H-[13C]-NMR spectroscopy in conjunction with infusion of [1,6-13C2]glucose and sodium [2-13C]acetate, respectively, after 48 h of abstinence. Besides establishing detailed 13C labeling of neuro-metabolites in a brain region-specific manner, our results show chronic ethanol induced-cognitive deficits along with a reduction in total glucose oxidation rates in the hippocampus and striatum. Furthermore, using [2-13C]acetate infusion, we showed an alcohol-induced increase in astroglial metabolic activity in the hippocampus and prefrontal cortex. Interestingly, increased astroglia activity in the hippocampus and prefrontal cortex was associated with a differential expression of monocarboxylic acid transporters that are regulating acetate uptake and metabolism in the brain.


Subject(s)
Astrocytes , Glucose , Animals , Mice , Acetates , Astrocytes/metabolism , Brain/metabolism , Ethanol/toxicity , Glucose/metabolism , Magnetic Resonance Spectroscopy
4.
Neurochem Res ; 47(6): 1765-1777, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35347633

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with selective degeneration of motor neurons in the central nervous system. The pathophysiology of ALS is not well understood. We have used 1H-[13C]-NMR spectroscopy together with an administration of [1,6-13C2]glucose and [2-13C]acetate in female and male SOD1G37R mice to assess neuronal and astroglial metabolic activity, respectively, in the central nervous system in ALS condition. The female (p = 0.0008) and male (p < 0.0001) SOD1G37R mice exhibited decreased forelimb strength when compared with wild-type mice. There was a reduction in N-acetylaspartylglutamate level, and elevation in myo-inositol in the spinal cord of female and male SOD1G37R mice. The transgenic male mice exhibited increased acetate oxidation in the spinal cord (p = 0.05) and cerebral cortex (p = 0.03), while females showed an increase in the spinal cord (p = 0.02) only. As acetate is transported and preferentially metabolized in the astrocytes, the finding of increased rate of acetate oxidation in the transgenic mice is suggestive of astrocytic involvement in the pathogenesis of ALS. The rates of glucose oxidation in glutamatergic (p = 0.0004) and GABAergic neurons (p = 0.0052) were increased in the cerebral cortex of male SOD1G37R mice when compared with the controls. The female mice showed an increase in glutamatergic (p = 0.039) neurometabolic activity only. The neurometabolic activity was unperturbed in the spinal cord of either sex. These data suggest differential changes in neurometabolic activity across the central nervous system in SOD1G37R mice.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Glucose/metabolism , Male , Mice , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
5.
Front Psychiatry ; 12: 637863, 2021.
Article in English | MEDLINE | ID: mdl-33986699

ABSTRACT

Major depressive disorder (MDD) is a leading cause of distress, disability, and suicides. As per the latest WHO report, MDD affects more than 260 million people worldwide. Despite decades of research, the underlying etiology of depression is not fully understood. Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the matured central nervous system. Imbalance in the levels of these neurotransmitters has been implicated in different neurological and psychiatric disorders including MDD. 1H nuclear magnetic resonance (NMR) spectroscopy is a powerful non-invasive method to study neurometabolites homeostasis in vivo. Additionally, 13C-NMR spectroscopy together with an intravenous administration of non-radioactive 13C-labeled glucose or acetate provides a measure of neural functions. In this review, we provide an overview of NMR-based measurements of glutamate and GABA homeostasis, neurometabolic activity, and neurotransmitter cycling in MDD. Finally, we highlight the impact of recent advancements in treatment strategies against a depressive disorder that target glutamate and GABA pathways in the brain.

6.
Neurochem Int ; 137: 104750, 2020 07.
Article in English | MEDLINE | ID: mdl-32360130

ABSTRACT

Major depressive disorder is the leading cause of disability and suicidality worldwide. Here, we evaluated neural metabolic activity in prefrontal cortex (PFC) in C57BL6 mice undergoing a chronic unpredictable mild stress (CUMS) for three weeks to induce depression. Further, the efficacy of Lanicemine, a low trapping NMDA receptor antagonist, on behavioral and neurometabolic measures in CUMS mice was evaluated. The PFC neuronal and astroglial metabolic activity was evaluated by Proton Observed Carbon Edited (POCE) MR spectroscopy together with an infusion of [1,6-13C2]glucose and [2-13C]acetate, respectively. The rates of glutamatergic, GABAergic and astrocytic TCA cycles and neurotransmitter cycling were obtained by fitting a three-compartment metabolic model to 13C turnover of amino acids. Mice subjected to CUMS exhibited significantly reduced sucrose preference (CUMS 58.0 ± 12.5%, n = 29; Control 86.3 ± 6.4%, n = 30; p < 0.0001), and increased immobility (CUMS 146.1 ± 60.8s, n = 29; Control 29.9 ± 19.3s, n = 30; p < 0.0001) in the forced swim test. The concentrations of 13C labeled amino acids from [2-13C]acetate were decreased suggesting reduced astroglial metabolic activity in CUMS mice. The glutamatergic and GABAergic TCA cycle rates were decreased in CUMS mice when compared with controls. In addition, GABA-glutamine and glutamate-glutamine neurotransmitter cycling were reduced in mice subjected to CUMS regimen. Most interestingly, a short time intervention of lanicemine restored behavioral measures (sucrose preference and immobility), and rates of glucose oxidation in glutamatergic and GABAergic neurons in CUMS mice. In summary, our findings suggest that depression leads to a reduction in excitatory and inhibitory neurotransmission in PFC, and targeting glutamatergic pathway may have potential therapeutic role in chronic depression.


Subject(s)
Astrocytes/metabolism , Depression/drug therapy , Neurons/metabolism , Neurotransmitter Agents/metabolism , Phenethylamines/metabolism , Pyridines/metabolism , Animals , Astrocytes/drug effects , Depression/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Male , Mice, Inbred C57BL , Neurons/drug effects , Phenethylamines/pharmacology , Pyridines/pharmacology , Stress, Psychological/metabolism , Sucrose/metabolism
7.
J Biosci ; 44(1)2019 Mar.
Article in English | MEDLINE | ID: mdl-30837353

ABSTRACT

Systemic delivery of nucleic acids to the central nervous system (CNS) is a major challenge for the development of RNA interference-based therapeutics due to lack of stability, target specificity, non-permeability to the blood-brain barrier (BBB), and lack of suitable carriers. Using a designed bi-functional fusion protein TARBP-BTP in a complex with siRNA, we earlier demonstrated knockdown of target genes in the brain of both AßPP-PS1 (Alzheimer's disease, AD) and wild-type C57BL/6 mice. In this report, we further substantiate the approach through an extended use in AßPP-PS1 mice, which upon treatment with seven doses of ß-secretase AßPP cleaving Enzyme 1 (BACE1) TARBP-BTP:siRNA, led to target-specific effect in the mouse brain. Concomitant gene silencing of BACE1, and consequent reduction in plaque load in the cerebral cortex and hippocampus (greater than 60%) in mice treated with TARBP-BTP:siRNA complex, led to improvement in spatial learning and memory. The study validates the efficiency of TARBP-BTP fusion protein as an efficient mediator of RNAi, giving considerable scope for future intervention in neurodegenerative disorders through the use of short nucleic acids as gene specific inhibitors.


Subject(s)
Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , RNA-Binding Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/administration & dosage , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/administration & dosage , Brain/drug effects , Brain/metabolism , Brain/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Gene Silencing , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Maze Learning/drug effects , Mice , Mice, Transgenic , Oligopeptides/genetics , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , RNA Interference , RNA-Binding Proteins/administration & dosage
8.
J Control Release ; 228: 120-131, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26948382

ABSTRACT

RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑßPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑßPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues.


Subject(s)
Alzheimer Disease/therapy , Brain/metabolism , Gene Transfer Techniques , Peptides/metabolism , RNA, Small Interfering/administration & dosage , RNA-Binding Proteins/metabolism , RNAi Therapeutics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Blood-Brain Barrier/metabolism , Brain/pathology , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Delivery Systems , G(M1) Ganglioside/metabolism , Humans , Mice , Mice, Inbred C57BL , Peptides/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/therapeutic use , RNA-Binding Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
9.
J Neurochem ; 128(5): 628-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24164397

ABSTRACT

This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 µmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain.


Subject(s)
Brain Chemistry/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Glutamic Acid/physiology , Neurotransmitter Agents/physiology , Signal Transduction/drug effects , gamma-Aminobutyric Acid/physiology , Acetates/metabolism , Algorithms , Amino Acids/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Central Nervous System Depressants/pharmacokinetics , Cerebellum/drug effects , Cerebellum/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Ethanol/pharmacokinetics , Glucose/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Synaptic Transmission/drug effects
10.
PLoS One ; 7(7): e41824, 2012.
Article in English | MEDLINE | ID: mdl-22848621

ABSTRACT

BACKGROUND AND PURPOSE: The effects of nicotine on cerebral metabolism and its influence on smoking behavior is poorly understood. An understanding of the chronic effects of nicotine on excitatory and inhibitory metabolic demand, and corresponding neurotransmission may provide clues for designing strategies for the optimal smoking cessation intervention. The objective of the current study was to investigate neuronal and astroglial metabolism in mice exposed to nicotine (0.5 and 2.0 mg/kg, s.c.) three times in a day for 4 weeks. EXPERIMENTAL APPROACH/PRINCIPAL FINDINGS: Metabolic measurements were carried out by co-infusing [U-(13)C(6)]glucose and [2-(13)C]acetate, and monitoring (13)C labeling of amino acids in brain tissue extract using (1)H-[(13)C] and (13)C-[(1)H]-NMR spectroscopy. Concentration of (13)C-labeled glutamate-C4 was increased significantly from glucose and acetate with chronic nicotine treatment indicating an increase in glucose oxidation by glutamatergic neurons in all brain regions and glutamate-glutamine neurotransmitter cycle in cortical and subcortical regions. However, chronic nicotine treatment led to increased labeling of GABA-C2 from glucose only in the cortical region. Further, increased labeling of glutamine-C4 from [2-(13)C]acetate is suggestive of increased astroglial activity in subcortical and cerebellum regions of brain with chronic nicotine treatment. CONCLUSIONS AND SIGNIFICANCE: Chronic nicotine exposure enhanced excitatory activity in the majority of brain regions while inhibitory and astroglial functions were enhanced only in selected brain regions.


Subject(s)
Brain/drug effects , Brain/metabolism , Glutamic Acid/metabolism , Nicotine/pharmacology , Substance-Related Disorders/metabolism , gamma-Aminobutyric Acid/metabolism , Acetates/metabolism , Animals , Behavior, Animal/drug effects , Brain/cytology , Brain/pathology , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Signal Transduction/drug effects , Substance-Related Disorders/pathology
11.
Neurochem Int ; 60(2): 177-85, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22107705

ABSTRACT

Chronic manganese (Mn) exposure in rodents, non-human primates and humans has been linked to Parkinson's disease like condition known as Manganism. Mn being a cofactor for many enzymes in brain has been known to be accumulated in various regions differentially and thus exert toxic effect upon chronic overexposure. In present study, neuropathology of Manganism was investigated by evaluating regional neuronal and astroglial metabolism in mice under chronic Mn exposure. Male C57BL6 mice were treated with MnCl(2) (25 mg/kg, i.p.) for 21 days. Cerebral metabolism was studied by co-infusing [U-(13)C(6)]glucose and [2-(13)C]acetate, and monitoring (13)C labeling of amino acids in brain tissue extract using (1)H-[(13)C] and (13)C-[(1)H]-NMR spectroscopy. Glutamate, choline, N-acetyl aspartate and myo-inositol were found to be reduced in thalamus and hypothalamus indicating a loss in neuronal and astroglial cells due to Mn neurotoxicity. Reduced labeling of Glu(C4) from [U-(13)C(6)]glucose and [2-(13)C]acetate indicates an impairment of glucose oxidation by glutamatergic neurons and glutamate-glutamine neurotransmitter cycle in cortex, striatum, thalamus-hypothalamus and olfactory bulb with chronic Mn exposure. Additionally, reduced labeling of Gln(C4) from [2-(13)C]acetate indicates a decrease in acetate oxidation by astroglia in the same regions. However, GABAergic function was alleviated only in thalamus-hypothalamus. Our findings indicate that chronic Mn impairs excitatory (glutamatergic) function in the majority of regions of brain while inhibitory (GABAergic) activity is perturbed only in basal ganglia.


Subject(s)
Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , Magnesium Chloride/toxicity , Manganese Poisoning/metabolism , Manganese Poisoning/physiopathology , Animals , Brain/physiology , Chronic Disease , Disease Models, Animal , Drug Administration Schedule , Energy Metabolism/physiology , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...