Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(21): 5193-5200, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34038125

ABSTRACT

Predicting activation energies for reaction steps is essential for modeling catalytic processes, but accurate barrier simulations often require considerable computational expense, especially for electrochemical reactions. Given the challenges of barrier computations and the growing promise of electrochemical routes for various processes, generalizable energetic trends in electrochemistry can significantly aid in analyzing reaction networks and building microkinetic models. Herein, we employ density functional theory and machine learning nudged elastic band models to simulate electrochemical protonation of *C, *N, and *O monatomic adsorbates from hydronium on a series of transition metal surfaces. We observe a consistent trend of decreasing protonation reaction energies yet increasing activation barriers from *O to *N to *C. Analysis of bond orders and reaction pathways provides insight into the origin of the observed trends in protonation energetics. We hypothesize that these results are relevant for polyatomic adsorbates, which can simplify analysis of reaction mechanisms and inform catalyst design.

2.
Phys Chem Chem Phys ; 21(45): 25323-25327, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31701964

ABSTRACT

Pourbaix diagrams have been used extensively to evaluate stability regions of materials subject to varying potential and pH conditions in aqueous environments. However, both recent advances in high-throughput material exploration and increasing complexity of materials of interest for electrochemical applications pose challenges for performing Pourbaix analysis on multidimensional systems. Specifically, current Pourbaix construction algorithms incur significant computational costs for systems consisting of four or more elemental components. Herein, we propose an alternative Pourbaix construction method that filters all potential combinations of species in a system to only those present on a compositional convex hull. By including axes representing the quantities of H+ and e- required to form a given phase, one can ensure every stable phase mixture is included in the Pourbaix diagram and reduce the computational time required to construct the resultant Pourbaix diagram by several orders of magnitude. This new Pourbaix algorithm has been incorporated into the pymatgen code and the Materials Project website, and it extends the ability to evaluate the Pourbaix stability of complex multicomponent systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...