Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Article in English | MEDLINE | ID: mdl-37142773

ABSTRACT

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Subject(s)
Chiroptera , Morbillivirus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Zoonoses , Morbillivirus/genetics , Cell Line
2.
Acta Trop ; 242: 106894, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965613

ABSTRACT

Mayaro virus (MAYV) is an emergent arthropod-borne virus that causes an acute febrile illness accompanied by arthralgia, similar to chikungunya virus. Increasing urbanization of MAYV outbreaks in the Americas has led to concerns for geographic expansion and spillover. Given the potential importance of this pathogen, we sought to fill critical gaps in knowledge regarding MAYV infectivity and geographic variation. This study describes the cytopathogenicity of MAYV in human dermal fibroblasts, human skeletal muscle satellite cells, human embryonic kidney cells (HEK), peripherally derived human macrophages, and Vero cells. We found that regional differences between these viruses do not affect replication kinetics, with high titers peaking at 37 h post infection. MAYV-U, did however, cause the most cytopathic effect in a time-dependent manner. Compared to the other two prototypic isolates, MAYV-U harbors unique mutations in the E2 protein, D60G and S205F, that are likely to interact with the host cell receptor and could affect infectivity. We further demonstrate that pre-treatment of cells with interferon-ß inhibited viral replication in a dose-dependent manner. Together, these findings advance our understanding of MAYV infection of human target cells and provide initial data regarding variation according to geography.


Subject(s)
Alphavirus Infections , Alphavirus , Chikungunya virus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Chikungunya virus/genetics , Virus Replication , Americas
SELECTION OF CITATIONS
SEARCH DETAIL
...