Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205996

ABSTRACT

A quick, simple, and reliable isocratic ultra-performance supercritical fluid chromatography-photodiode array detector (UPSFC-DAD) method was developed and validated to determine lycopene in different horticultural products. The effects of stationary phase, co-solvent, pressure, temperature, flow rate, and mobile phase additive on the separation of lycopene were evaluated. The developed method involved BEH-2EP-2.1 × 150 mm, 5 µm as the stationary phase, and CO2/MeOH 85:15 (v/v) with formic acid as the additive at 0.10% as the mobile phase. The column temperature was maintained at 45 °C, ABPR at 1800 psi, and the mobile phase's flow rate was maintained at 1 mL/min. Under the optimized conditions, lycopene was successfully separated within 0.722 ± 0.001 min. The standard curve assayed over a range of 10 to 100 µg/mL resulted in a correlation coefficient of 0.998. The mean recoveries between 97.38% and 102.67% at different spiking levels with RSD < 2.5% were achieved. The intra and inter-day precision expressed as relative standard deviations (RSD) were found to range from 1.27% to 3.28% and from 1.57% to 4.18%, respectively. Robustness in terms of retention time (tR) and RSD were found to be 0.93 ± 0.23 min and less <2.80%, respectively. The limits of detection and quantification were 0.14 µg/mL and 0.37 µg/mL, respectively. This method was successfully applied to determine lycopene extracted from papaya, grapefruit, and bitter melon.

2.
Sci Rep ; 11(1): 10273, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986424

ABSTRACT

In this study, an underutilized citrus family fruit named grapefruit was explored for the extraction of lycopene using supercritical carbon dioxide (CO2) extraction technique. An experimental design was developed using response surface methodology to investigate the effect of supercritical carbon dioxide (CO2) operating parameter viz., pressure, temperature, CO2 flow rate, and extraction time on the extraction yield of lycopene yield from grapefruit. A total of 30 sets of experiments were conducted with six central points. The statistical model indicated that extraction pressure and extraction time individually, and their interaction, significantly affected the lycopene yield. The central composite design showed that the polynomial regression models developed were in agreement with the experimental results, with R2 of 0.9885. The optimum conditions for extraction of lycopene from grapefruit were 305 bar pressure, 35 g/min CO2 flow rate, 135 min of extraction time, and 70 °C temperature.


Subject(s)
Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Citrus paradisi/chemistry , Lycopene/isolation & purification , Pressure , Temperature
3.
Int J Biol Macromol ; 163: 209-218, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32615226

ABSTRACT

This study ascertained the stability of phycobiliprotein (PBP), a bioactive protein from Dulse (Palmaria palmata) loaded within liposomes and stabilized with polyethylene glycol (2000 and 4000 g/mol) and desulfated CNCs (DCs) containing adsorbed polyethylene glycol (DCs-2000 and DCs-4000). The effect of pH, temperature and illumination on the stability of PBP was investigated. Results showed that the temperature had the most significant (p < 0.05) effect on the fluorescence intensity of the PBP, accounting for up to 70% loss of the fluorescence intensity for PBP loaded liposome (PL), PL stabilized with PEG-2000 (PLP-2000) and PEG 4000 (PLP-4000) and PL stabilized with desulfated CNCs (DCs), however, 60% for the PL stabilized with PEG 2000 and PEG 4000 adsorbed CNCs (PLDCs-2000 and PLDCs-4000) at 60 °C compared to those stabilized at 4 °C. A further increase in temperature to 80 °C led to a complete loss of fluorescence. Operating at the extreme pH's of 1.0 and 11.0 resulted in a loss of 90% and 30% fluorescence intensity, respectively for PBP in solution, whereas, 20% and 2% loss was observed for PBP incorporated inside the liposomes. Regarding the effect of illumination, PLDCs-2000 and PLDCs-4000 were the most stable, retaining the fluorescence intensity of PBP up to 70% after 72 h of exposure. This is compared to 85% loss of fluorescence for PBP in solution. Furthermore, at pH of 1.0, there was an increase in average particle size for the PLDCs-2000 and PLDCs-4000 from 189 ± 3 & 206 ± 2 nm to 6464 ± 211 & 6698 ± 317 nm and a charge reversal in the zeta potential from -36 ± 1 & -34 ± 2 to +16 ± 3 & +14 ± 1. Confocal and optical microscopic images confirmed the coalescence of PBP loaded liposome and agglomeration PLDCs-2000 and PLDCs-4000 under acidic pH (<3.0). In contrast, changes in temperature from 4 °C to 100 °C and illumination as a function of time up to 72 h resulted in no change in liposome size and zeta potential.


Subject(s)
Cellulose/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Phycobiliproteins/chemistry , Polyethylene Glycols/chemistry , Adsorption , Chemical Phenomena , Hydrogen-Ion Concentration , Particle Size , Protein Stability , Spectroscopy, Fourier Transform Infrared , Temperature
4.
Sci Rep ; 10(1): 10198, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576906

ABSTRACT

A trend of present encapsulation research indicates an increased interest in the search for natural encapsulants for bioactive phytochemicals. The present study in pursuit of the same studies the use of jackfruit seed starch (JSS), an underutilized natural polysaccharide in conjugation with soy protein isolate (SPI) as an encapsulating material and NBRE-15 as an emulsifier. Three independent variables viz., total soluble solids (TSS, 20, 25 and 30° Brix), SPI: JSS (1:1, 1:3 and 1:5) and NBRE-15 (0.1, 0.2 and 0.3%) were optimized for achieving the most efficient encapsulation of anthocyanin using a three level, three parameter, Box-Behnken design (BBD) of the Design of Experiments (DOE). The responses considered for the optimization were monomeric anthocyanin content, antioxidant activity and encapsulation efficiency. A combination of 27.0% TSS, 1:5 SPI: JSS ratio and 0.3% NBRE-15 was found to be optimum for the encapsulation of anthocyanin with the desirability of 92.6%. Microcapsules obtained using the optimized combination of independent variables was found to contain 3215.59 mg/100 g monomeric anthocyanin. The antioxidant activity and encapsulation efficiency of the encapsulated material obtained using optimized combinations of independent variable were found to be 365.26 µmol Trolox/g and 89.71%, respectively. The microcapsules were also additionally analyzed for the particle size distribution and morphological characterization. Particle size analysis indicated that the microcapsules obtained had a mean particle size of 60.97 µm. Scanning electron microscopy for morphological characterization indicated that the microcapsules so obtained were oval to round in shape and had a smooth surface. Storage studies to estimate the half-life of anthocyanin in the microcapsule at room temperature (37 °C) clearly indicated greater stability i.e. 63 days when stored under amber-colored vial compared to only 35 days when stored under clear transparent vial.


Subject(s)
Anthocyanins/chemistry , Artocarpus/chemistry , Emulsifying Agents/chemistry , Powders/chemistry , Seeds/chemistry , Soybean Proteins/chemistry , Starch/chemistry , Antioxidants/chemistry , Capsules/chemistry , Particle Size , Polysaccharides/chemistry , Temperature
5.
Sci Rep ; 9(1): 19266, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848376

ABSTRACT

Study ascertained the recovery of ß-carotene from enzyme-treated (enzyme load of 167 U/g) pericarp of ripe bitter melon using supercritical fluid extraction (SFE) technique. Effect of different pressure (ranged from 150-450 bar), carbon dioxide (CO2) flow rates (ranged from 15 to 55 ml/min), temperatures (from 50 to 90 °C), and extraction periods (from 45-225 minutes) were observed on the extraction efficiency of ß-carotene. Results showed that extraction pressure (X1) among extraction parameters had the most significant (p < 0.05) effect on extraction efficiency of the ß-carotene followed by allowed extraction time (X4), CO2 flow rate (X2) and the temperature of the extraction (X3). The maximum yield of 90.12% of ß-carotene from lyophilized enzymatic pretreated ripe bitter melon pericarp was achieved at the pressure of approx. 390 bar, flow rate of 35 mL/min, temperature at 70 °C and extraction time of 190 min, respectively. Based on the accelerated storage study the 70% retention shelf life of the ß-carotene into extract was estimated up to 2.27 months at 10 °C and up to 3.21 months at 5 °C.


Subject(s)
Chromatography, Supercritical Fluid , Fruit/chemistry , Momordica charantia/chemistry , beta Carotene/isolation & purification , beta Carotene/chemistry
6.
Food Chem ; 271: 129-135, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30236657

ABSTRACT

The effect of different processing conditions (B: boiling; F: LAB fermentation; FS: fermentation and steaming; FSF: fermentation, steaming, flaking) of whole grain sorghum on the proximate composition, antioxidants, anti-nutrients, and amino acids (AAs) was evaluated. A marginal increase in the protein content and a decrease in the fat content was observed in the F-sample. Total phenolics reduced by 28%; DPPH scavenging activity and CUPRAC activity increased by 1.4 and 6 times, respectively during fermentation. Tannin content reduced by 30-39%, for the F, FS and FSF samples; highest reduction in trypsin inhibitory activity (58%) was observed in the FS-sample. Total AAs increased by 2.9 folds in FSF samples. Grain sorghum contained mostly hydrophobic AAs (30-34%). The ratio of Essential amino acid to total amino acid and predicted protein efficiency ratio were highest in the F-sample, whereas predicted biological value of the FSF was 3 times than that of the control.


Subject(s)
Amino Acids/analysis , Antioxidants/analysis , Food Handling/methods , Sorghum/chemistry , Tannins/analysis , Edible Grain , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...