Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Pharmaceutics ; 15(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37896196

ABSTRACT

Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of MEDI7219, a stabilized, lipidated, glucagon-like peptide 1 agonist peptide, and the selection of sodium chenodeoxycholate (Na CDC) and propyl gallate (PG) as permeation enhancer combinations. We hereby describe the development of the MEDI7219 tablet formulations and composition optimization via in vivo studies in dogs. We designed the MEDI7219 immediate-release tablets with the permeation enhancers Na CDC and PG. Immediate-release tablets were coated with an enteric coating that dissolves at pH ≥ 5.5 to target the upper duodenal region of the gastrointestinal tract and sustained-release tablets with a Carbopol bioadhesive polymer were coated with an enteric coating that dissolves at pH ≥ 7.0 to provide a longer presence at the absorption site in the gastrointestinal tract. In addition to immediate- and enteric-coated formulations, we also tested a proprietary delayed release erodible barrier layer tablet (OralogiKTM) to deliver the payload to the target site in the gastrointestinal tract. The design of tablet dosage forms based on the optimization of formulations resulted in up to 10.1% absolute oral bioavailability in dogs with variability as low as 26% for MEDI7219, paving the way for its clinical development.

2.
Sci Rep ; 11(1): 22521, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795324

ABSTRACT

Peptide therapeutics are increasingly used in the treatment of disease, but their administration by injection reduces patient compliance and convenience, especially for chronic diseases. Thus, oral administration of a peptide therapeutic represents a significant advance in medicine, but is challenged by gastrointestinal instability and ineffective uptake into the circulation. Here, we have used glucagon-like peptide-1 (GLP-1) as a model peptide therapeutic for treating obesity-linked type 2 diabetes, a common chronic disease. We describe a comprehensive multidisciplinary approach leading to the development of MEDI7219, a GLP-1 receptor agonist (GLP-1RA) specifically engineered for oral delivery. Sites of protease/peptidase vulnerabilities in GLP-1 were removed by amino acid substitution and the peptide backbone was bis-lipidated to promote MEDI7219 reversible plasma protein binding without affecting potency. A combination of sodium chenodeoxycholate and propyl gallate was used to enhance bioavailability of MEDI7219 at the site of maximal gastrointestinal absorption, targeted by enteric-coated tablets. This synergistic approach resulted in MEDI7219 bioavailability of ~ 6% in dogs receiving oral tablets. In a dog model of obesity and insulin resistance, MEDI7219 oral tablets significantly decreased food intake, body weight and glucose excursions, validating the approach. This novel approach to the development of MEDI7219 provides a template for the development of other oral peptide therapeutics.


Subject(s)
Chronic Disease , Drug Delivery Systems , Glucagon-Like Peptide-1 Receptor , Peptides , Protein Engineering , Animals , Cricetinae , Humans , Male , Mice , Administration, Oral , Caco-2 Cells , Chemistry, Pharmaceutical/methods , Chenodeoxycholic Acid/administration & dosage , CHO Cells , Chronic Disease/drug therapy , Cricetulus , Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Glucagon-Like Peptide-1 Receptor/agonists , Insulin-Secreting Cells/cytology , Mice, Inbred C57BL , Peptides/chemistry , Propyl Gallate/administration & dosage , Protein Engineering/methods , Receptors, Glucagon/agonists , Tablets, Enteric-Coated
3.
J Control Release ; 338: 784-791, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34499981

ABSTRACT

Oral delivery of peptides is a challenge due to their instability and their limited transport and absorption characteristics within the gastrointestinal tract. In this work, we used layering techniques in a fluidized bed dryer to create a configuration in which the active peptide, permeation enhancers, and polymers are coated to control the release of the peptide. Formulations were developed to disintegrate at pH values of 5.5 and 7.0. In addition, sustained-release or mucoadhesive polymers were coated to trigger release at a desired site in the gastrointestinal tract. Dissolution studies with a USP Type I (basket) apparatus confirmed the duration of release. Pharmacokinetic studies were performed in beagle dogs to evaluate bioavailability. A high-disintegration pH was found to be advantageous in enhancing bioavailability.


Subject(s)
Pharmaceutical Preparations , Administration, Oral , Animals , Biological Availability , Dogs , Peptides , Polymers , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL