Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 874: 162540, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870513

ABSTRACT

Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions. Results showed that reduced traffic flows led to statistically significant reductions in average exposure to UFP under all traffic reduction scenarios (TRS). However, the size of the reduction was variable in both time and place. Under the most stringent TRS (traffic reduction of 82 %), median ultrafine particle (UFP) concentrations reduced by 73 %. Under the less stringent scenario, the extent of reduction varied in time and space; a traffic reduction of 62 % resulted in a 23 % reduction in median UFP concentrations in 2020 but in 2021 similar traffic reductions led to a decrease in median UFP concentrations of 71 %. Under all scenarios, the magnitude of the impact of traffic reductions on UFP exposure varied along the route, with areas dominated by emissions from construction and ferry/port activities showing little correlation between traffic flow and exposure. Shared traffic spaces, previously pedestrianised, also recorded consistently high concentrations with little variability observed. This study provided a unique opportunity to assess the potential benefits and risks of such zones and to help decision-makers evaluate future traffic management interventions (such as low emissions zones). The results suggest that controlled traffic flow interventions can result in a significant reduction in pedestrian exposure to UFPs, but that the magnitude of reductions is sensitive to local-scale variations in meteorology, urban land use and traffic flow patterns.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Particle Size
2.
Front Chem ; 10: 1032624, 2022.
Article in English | MEDLINE | ID: mdl-36405324

ABSTRACT

A case is presented for the value of archiving air quality filters to allow for retrospective analysis of emerging contaminants, that is filter constituents not considered to be harmful (and thus not identified or quantified specifically) at the time of collection but subsequently considered to be of interest. As an example, filters from a 20-year historical archive consisting of 16,000 filters from three sites across Auckland are re-examined for the presence of elongated mineral fibres known to be present in rock across the city. Originally collected for the purpose of the source apportionment of particulate matter, 10 filters from each of the three sites were chosen for reanalysis based on their high silica and aluminium content, and thus considered more likely to contain fibre-like particles (FLP). These filters were analysed using various microscopic methods, including phase contrast microscopy (PCM), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The results show that although the commonly used fibrous polytetrafluoroethylene (PTFE) material of the filters may hamper the visual identification of any fibre-like particles under a certain length, their key components are able to be identified using a combination of PCM and SEM when they are of a suitable dimension and have settled in a certain orientation on the filter. In this case, the use of EDS confirmed the silicon content of the fibres and also revealed elemental spectra. Although the exact identification of the mineral fibre is uncertain, the EDS scan is consistent with hazardous zeolites such as erionite, known to be present in the rock found in Auckland. This study highlights the value in maintaining filter archives for the purpose of investigating the historical evolution of emerging atmospheric pollutants.

3.
Sci Total Environ ; 746: 141129, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32745857

ABSTRACT

The current changes in vehicle movement due to 'lockdown' conditions (imposed in cities worldwide in response to the COVID-19 epidemic) provide opportunities to quantify the local impact of 'controlled interventions' on air quality and establish baseline pollution concentrations in cities. Here, we present a case study from Auckland, New Zealand, an isolated Southern Hemisphere city, which is largely unaffected by long-range pollution transport or industrial sources of air pollution. In this city, traffic flows reduced by 60-80% as a result of a government-led initiative to contain the virus by limiting all transport to only essential services. In this paper, ambient pollutant concentrations of NO2, O3, BC, PM2.5, and PM10 are compared between the lockdown period and comparable periods in the historical air pollution record, while taking into account changes in the local meteorology. We show that this 'natural experiment' in source emission reductions had significant but non-linear impacts on air quality. While emission inventories and receptor modelling approaches confirm the dominance of traffic sources for NOx (86%), and BC (72%) across the city, observations suggest a consequent reduction in NO2 of only 34-57% and a reduction in BC of 55-75%. The observed reductions in PM2.5 (still likely to be dominated by traffic emissions), and PM10 (dominated by sea salt, traffic emissions to a lesser extent, and affected by seasonality) were found to be significantly less (8-17% for PM2.5 and 7-20% for PM10). The impact of this unplanned controlled intervention shows the importance of establishing accurate, local-scale emission inventories, and the potential of the local atmospheric chemistry and meteorology in limiting their accuracy.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Coronavirus Infections , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome , Betacoronavirus , COVID-19 , Cities , Environmental Monitoring , Humans , New Zealand/epidemiology , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...