Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 6(1): 1, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28083445

ABSTRACT

PURPOSE: To develop and evaluate an antibiotic-eluting suture for ophthalmic surgery. METHODS: Wet electrospinning was used to manufacture sutures composed of poly(L-lactide), polyethylene glycol (PEG), and levofloxacin. Size, morphology, and mechanical strength were evaluated via scanning electron microscopy and tensile strength, respectively. In vitro drug release was quantified using high performance liquid chromatography. In vitro suture activity against Staphylococcus epidermidis was investigated through bacterial inhibition studies. Biocompatibility was determined via histological analysis of tissue sections surrounding sutures implanted into Sprague-Dawley rat corneas. RESULTS: Sutures manufactured via wet electrospinning were 45.1 ± 7.7 µm in diameter and 0.099 ± 0.007 newtons (N) in breaking strength. The antibiotic release profile demonstrated a burst followed by sustained release for greater than 60 days. Increasing PEG in the polymer formulation, from 1% to 4% by weight, improved drug release without negatively affecting tensile strength. Sutures maintained a bacterial zone of inhibition for at least 1 week in vitro and elicited an in vivo tissue reaction comparable to a nylon suture. CONCLUSIONS: There is a need for local, postoperative delivery of antibiotics following ophthalmic procedures. Wet electrospinning provides a suitable platform for the development of sutures that meet size requirements for ophthalmic surgery and are capable of sustained drug release; however, tensile strength must be improved prior to clinical use. TRANSLATIONAL RELEVANCE: No antibiotic-eluting suture exists for ophthalmic surgery. A biocompatible, high strength suture capable of sustained antibiotic release could prevent ocular infection and preclude compliance issues with topical eye drops.

2.
J Bone Miner Res ; 27(5): 1132-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22247037

ABSTRACT

Fibroblast growth factor-23 (FGF23) is a phosphate- and vitamin D-regulating hormone derived from osteoblasts/osteocytes that circulates in both active (intact, iFGF23) and inactive (C-terminal, cFGF23) forms. O-glycosylation by O-glycosyl transferase N-acetylgalactosaminyltransferase 3 (ppGalNAcT3) and differential cleavage by furin have been shown to be involved in regulating the ratio of active to inactive FGF23. Elevated iFGF23 levels are observed in a number of hypophosphatemic disorders, such as X-linked, autosomal recessive, and autosomal dominant hypophosphatemic rickets, whereas low iFGF23 levels are found in the hyperphosphatemic disorder familial tumoral calcinosis/hyperphosphatemic hyperostosis syndrome. Fibrous dysplasia of bone (FD) is associated with increased total FGF23 levels (cFGF23 + iFGF23); however, classic hypophosphatemic rickets is uncommon. Our results suggest that it can be explained by increased FGF23 cleavage leading to an increase in inactive cFGF23 relative to active iFGF23. Given the fact that FD is caused by activating mutations in the small G-protein G(s) α that results in increased cyclic adenosine monophosphate (cAMP) levels, we postulated that there may be altered FGF23 cleavage in FD and that the mechanism may involve alterations in cAMP levels and ppGalNacT3 and furin activities. Analysis of blood specimens from patients with FD confirmed that the elevated total FGF23 levels are the result of proportionally increased cFGF23 levels, consistent with less glycosylation and enhanced cleavage by furin. Analysis of primary cell lines of normal and mutation-harboring bone marrow stromal cells (BMSCs) from patients with FD demonstrated that BMSCs harboring the causative G(s) α mutation had higher cAMP levels, lower ppGalNAcT3, and higher furin activity. These data support the model wherein glycosylation by ppGalNAcT3 inhibits FGF23 cleavage by furin and suggest that FGF23 processing is a regulated process that controls overall FGF23 activity in FD patients.


Subject(s)
Fibroblast Growth Factors/metabolism , Fibrous Dysplasia of Bone/pathology , Bone Marrow Cells/metabolism , Cell Line , Cyclic AMP/analysis , Cyclic AMP/blood , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/analysis , Fibroblast Growth Factors/blood , Furin/metabolism , Gene Expression Regulation , Humans , N-Acetylgalactosaminyltransferases/metabolism , Polypeptide N-acetylgalactosaminyltransferase
3.
J Biol Chem ; 281(26): 17579-87, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16547354

ABSTRACT

The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.


Subject(s)
Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphotransferases (Nitrogenous Group Acceptor)/chemistry , Phosphotransferases (Nitrogenous Group Acceptor)/metabolism , Enzyme Activation/physiology , Kinetics , Ligands , Magnesium/metabolism , Phosphoenolpyruvate/metabolism , Phosphorylation , Protein Folding , Protein Structure, Tertiary , Spectrometry, Fluorescence , Temperature
4.
J Biol Chem ; 281(26): 17570-8, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16547355

ABSTRACT

Enzyme I (EI) is the first protein in the phosphotransfer sequence of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This system catalyzes sugar phosphorylation/transport and is stringently regulated. Since EI homodimer accepts the phosphoryl group from phosphoenolpyruvate (PEP), whereas the monomer does not, EI may be a major factor in controlling sugar uptake. Previous work from this and other laboratories (e.g. Dimitrova, M. N., Szczepanowski, R. H., Ruvinov, S. B., Peterkofsky, A., and Ginsburg A. (2002) Biochem. 41, 906-913), indicate that K(a) is sensitive to several parameters. We report here a systematic study of K(a) determined by sedimentation equilibrium, which showed that it varied by 1000-fold, responding to virtually every parameter tested, including temperature, phosphorylation, pH (6.5 versus 7.5), ionic strength, and especially the ligands Mg(2+) and PEP. This variability may be required for a regulatory protein. Further insight was gained by analyzing EI by sedimentation velocity, by near UV CD spectroscopy, and with a nonphosphorylatable active site mutant, EI-H189Q, which behaved virtually identically to EI. The singular properties of EI are explained by a model consistent with the results reported here and in the accompanying paper (Patel, H. V., Vyas, K. A., Mattoo, R. L., Southworth, M., Perler, F. B., Comb, D., and Roseman, S. (2006) J. Biol. Chem. 281, 17579-17587). We suggest that EI and EI-H189Q each comprise a multiplicity of conformers and progressively fewer conformers as they dimerize and bind Mg(2+) and finally PEP. Mg(2+) alone induces small or no detectable changes in structure, but large conformational changes ensue with Mg(2+)/PEP. This effect is explained by a "swiveling mechanism" (similar to that suggested for pyruvate phosphate dikinase (Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh, S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2652-2657)), which brings the C-terminal domain with the two bound ligands close to the active site His(189).


Subject(s)
Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphotransferases (Nitrogenous Group Acceptor)/chemistry , Phosphotransferases (Nitrogenous Group Acceptor)/metabolism , Binding Sites/physiology , Dimerization , Enzyme Activation/physiology , Hydrogen-Ion Concentration , Ligands , Magnesium/metabolism , Mutagenesis , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphorylation , Phosphotransferases (Nitrogenous Group Acceptor)/genetics , Protein Structure, Tertiary , Substrate Specificity , Temperature
5.
Proc Natl Acad Sci U S A ; 101(50): 17486-91, 2004 Dec 14.
Article in English | MEDLINE | ID: mdl-15557553

ABSTRACT

The phosphoenolpyruvate:glycose phosphotransferase system (PTS) participates in important functions in the bacterial cell, including the phosphorylation/uptake of PTS sugars. Enzyme I (EI), the first protein of the PTS complex, accepts the phosphoryl group from phosphoenolpyruvate, which is then transferred through a chain of proteins to the sugar. In these studies, a mutant GFP, enhanced yellow fluorescent protein (YFP), was linked to the N terminus of EI, giving Y-EI. Y-EI was active both in vitro (>/=90% compared with EI) and in vivo. Unexpectedly, the subcellular distribution of Y-EI varied significantly. Three types of fluorescence were observed: (i) diffuse (dispersed throughout the cell), (ii) punctate (concentrated in numerous discrete spots throughout the cell), and (iii) polar (at one or both ends of the cell). Cells from dense colonies grown on agar plates with LB broth or synthetic (Neidhardt) medium showed primarily bipolar or punctate fluorescence. In liquid culture, under carefully defined carbon-limiting growth conditions [ribose (non-PTS), mannitol (PTS sugar), or dl-lactate], cellular levels of enzymatically active Y-EI remain essentially constant for each carbon source, but fluorescence distribution depends on C source, cell density, growth phase, and apparently on "conditioned medium." Fluorescence was diffuse during exponential growth on LB or ribose/Neidhardt medium. On ribose they became punctate in the stationary phase, reverting to diffuse when more ribose was added. In LB, both Y-EI and a nonphosphorylatable mutant, H189Q-Y-EI, showed a diffuse fluorescence during growth, but, shortly after the addition of isopropyl beta-d-thiogalactopyranoside, Y-EI became bipolar; H189Q-Y-EI did not. The functions of EI sequestration remain to be determined.


Subject(s)
Escherichia coli/cytology , Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Cell Count , Cell Proliferation/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Culture Media, Conditioned/pharmacology , Escherichia coli/genetics , Escherichia coli/growth & development , Genes, Reporter/genetics , Isopropyl Thiogalactoside/pharmacology , Microscopy, Fluorescence , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Protein Transport/drug effects , Ribose/pharmacology , Time Factors
6.
J Biol Chem ; 277(33): 29555-60, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12042307

ABSTRACT

We have recently reported the molecular cloning of a gene, gspK, in Vibrio cholerae that encodes a specific glucosamine kinase. We describe here the identification of bglA, a gene contiguous to gspK in a presumptive large chitin catabolic operon. BglA was molecularly cloned into Escherichia coli, and the protein BglA was overexpressed and purified to apparent homogeneity. BglA is 65 kDa (574 amino acids) with an N-terminal amino acid sequence predicted by the gene sequence, suggesting that the enzyme is cytoplasmic. The purified enzyme exhibited optimal activity with p-nitrophenyl beta-glucoside, cellobiose, and higher oligosaccharides of cellulose. No other glucosides or glycosides tested were hydrolyzed, including Glc-Glc disaccharides where the linkage is beta 1-->2, beta 1-->3, and beta 1-->6, respectively. The predicted BglA sequence bears little similarity to other proteins in the data banks. The Henrissat algorithm places BglA sequence in Family 9 of the glycosidases, suggesting it is an endoglucanase. However, the results summarized above suggested that BglA is an exoenzyme yielding Glc at each cleavage step. To resolve this apparent discrepancy, detailed kinetic studies were conducted with cellotetraose. Only exoglucanase activity was detected. The function of this enzyme in V. cholerae remains to be determined, especially because our strain of this organism does not utilize cellobiose.


Subject(s)
Vibrio cholerae/enzymology , beta-Glucosidase/genetics , Base Sequence , Cloning, Molecular , DNA Primers , Kinetics , Substrate Specificity , Vibrio cholerae/genetics , beta-Glucosidase/isolation & purification , beta-Glucosidase/metabolism
7.
Proc Natl Acad Sci U S A ; 99(12): 8412-7, 2002 Jun 11.
Article in English | MEDLINE | ID: mdl-12060784

ABSTRACT

Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.


Subject(s)
Gangliosides/physiology , Myelin-Associated Glycoprotein/physiology , Nerve Regeneration/physiology , Neurites/physiology , Animals , Antibodies, Monoclonal/pharmacology , CHO Cells , Cricetinae , Gangliosides/biosynthesis , Gangliosides/immunology , Glycosphingolipids/metabolism , Ligands , Nerve Regeneration/drug effects , Neurites/ultrastructure , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...