Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Biophotonics ; 12(9): e201900028, 2019 09.
Article in English | MEDLINE | ID: mdl-31081280

ABSTRACT

Stimulated Raman scattering (SRS) microscopy is a label-free method generating images based on chemical contrast within samples, and has already shown its great potential for high-sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio-samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub-cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto-optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon-Hydrogen (CH)-stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm-1 , is demonstrated.


Subject(s)
Nonlinear Optical Microscopy/methods , Spectrum Analysis, Raman/methods , Carbon/chemistry , Cell Line, Tumor , Hep G2 Cells , Humans , Hydrogen/chemistry , Oscillometry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Vibration
2.
PLoS One ; 9(9): e106283, 2014.
Article in English | MEDLINE | ID: mdl-25188340

ABSTRACT

We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.


Subject(s)
Cell Membrane/metabolism , Endothelial Cells/metabolism , Spectrum Analysis, Raman/methods , Animals , Humans , Microscopy, Electron, Scanning , Multivariate Analysis
3.
Nano Lett ; 14(9): 5229-37, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25157643

ABSTRACT

Functionalizing nanoparticles with cell-penetrating peptides is a popular choice for cellular delivery. We investigated the effects of TAT peptide concentration and arrangement in solution on functionalized nanoparticles' efficacy for membrane permeation. We found that cell internalization correlates with the positive charge distribution achieved prior to nanoparticle encountering interactions with membrane. We identified a combination of solution based properties required to maximize the internalization efficacy of TAT-functionalized nanoparticles.


Subject(s)
Gold/chemistry , Lipid Bilayers/chemistry , Nanoparticles/chemistry , Peptides/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry , Computer Simulation , Drug Delivery Systems , HeLa Cells , Humans , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Nanotechnology/methods , Temperature , Water/chemistry
4.
Appl Spectrosc ; 68(8): 812-22, 2014.
Article in English | MEDLINE | ID: mdl-25061782

ABSTRACT

The epithelial-cell layer lining the two morphologically and functionally distinct segments of the mammalian intestinal tract, small intestine, and colon is constantly being renewed. This renewal is necessitated by a harsh lumen environment and is hypothesized to be driven by a small population of stem cells (SCs) that are believed to reside at the base of intestinal crypts. A lack of specific markers has hampered previous attempts to identify their exact location. We obtained tissue sections containing small intestine and colon crypts derived from normal (benign) or adenocarcinoma (AC) human intestine. The samples were floated onto BaF2 windows and analyzed using synchrotron radiation-based Fourier transform infrared microspectroscopy via an aperture size of 10 × 10 µm. Derived infrared (IR) spectral data was then analyzed using principal component analysis and/or linear discriminant analysis. Hypothesized cell types (as a function of aperture location along the length of individual crypts) within benign crypts were classed based on exploratory unsupervised IR spectral point clustering. Scores plots derived from individual small intestine crypts consistently generated one or two distinct spectra that clustered away from the remaining cell categories; these were retrospectively classed as "distinct base region" spectra. In these plots, a clear progression of locations along crypt lengths designated as from putative stem cells (SCs) to transit-amplifying (TA) cells to terminally differentiated (TD) cells was observed in benign small intestine and colon crypts. This progression of spectral points was crypt specific, pointing away from a unifying cell lineage model in human intestinal crypts. On comparison of AC-derived spectra versus corresponding benign, a subpopulation of AC-derived spectra suggested a putative SC-like spectral fingerprint; remaining IR spectra were classed as exhibiting TA cell-like or TD cell-like spectral characteristics. These observations could point to a cancer SC phenotype; an approach capable of identifying their in situ location has enormous therapeutic applications.


Subject(s)
Aberrant Crypt Foci/chemistry , Adenocarcinoma/chemistry , Intestinal Neoplasms/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Stem Cells/chemistry , Aberrant Crypt Foci/pathology , Adenocarcinoma/pathology , Colon/chemistry , Colon/cytology , Colon/pathology , Histocytochemistry , Humans , Image Processing, Computer-Assisted , Intestinal Neoplasms/pathology , Intestine, Small/chemistry , Intestine, Small/cytology , Intestine, Small/pathology , Phenotype , Synchrotrons
5.
Methods ; 68(2): 354-63, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24583117

ABSTRACT

Understanding uptake of nanomaterials by cells and their use for intracellular sensing is important for studying their interaction and toxicology as well as for obtaining new biological insight. Here, we investigate cellular uptake and intracellular dynamics of gold nanoparticles and demonstrate their use in reporting chemical information from the endocytotic pathway and cytoplasm. The intracellular gold nanoparticles serve as probes for surface-enhanced Raman spectroscopy (SERS) allowing for biochemical characterisation of their local environment. In particular, in this work we compare intracellular SERS using non-functionalised and functionalised nanoparticles in their ability to segregate different but closely related cell phenotypes. The results indicate that functionalised gold nanoparticles are more efficient in distinguishing between different types of cells. Our studies pave the way for understanding the uptake of gold nanoparticles and their utilisation for SERS to give rise to a greater biochemical understanding in cell-based therapies.


Subject(s)
Gold/chemistry , Imaging, Three-Dimensional/methods , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Cell Tracking/methods , Cytoplasm/chemistry , Endocytosis , Humans
6.
Cancer Biol Ther ; 15(2): 225-35, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24107651

ABSTRACT

Studies of the decades-long latent stages of breast carcinogenesis have been limited to when hyperplastic lesions are already present. Investigations of earlier stages of breast cancer (BC) latency have been stymied by the lack of fiducial biomarkers needed to identify where in histologically normal tissues progression toward a BC might be taking place. Recent evidence suggests that a marker of chronic oxidative stress (OxS), protein adducts of 4-hydroxy-2-nonenal (4HNE), can meet this need. Specifically: (1) 4HNE immunopositive (4HNE+) mammary epithelial (ME) cells were found to be prevalent in normal (reduction mammoplasty) tissues of most women (including many teenagers) studied, representative of those living in the United States' high risk-posing environment and: (2) marked (> 1.5-fold) differences were identified between tissues of healthy young women with many vs. few 4HNE+ ME cells in the relative levels of transcripts for 42 of the 84 OxS-associated genes represented in SABioscience Oxidative-Stress/Oxidative-Defense PCR array. Herein we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy to identify molecular changes associated with 4HNE adducts in basal and luminal ME cells in terminal ductal units (TDLU), which are the cells of origin of BC, and associated intralobular and interlobular stroma, known contributors to carcinogenesis. Multivariate analysis-derived wavenumbers differentiated 4HNE+ and 4HNE- cells in each of the anatomical compartments. Specifically, principal component and linear discriminant analyses of mid-infrared spectra obtained from these cells revealed unambiguous, statistically highly significant differences in the "biochemical fingerprint" of 4HNE+ vs. 4HNE- luminal and basal ME cells, as well as between associated intralobular and interlobular stroma. These findings demonstrate further SR-FTIR microspectroscopy's ability to identify molecular changes associated with altered physiological and/or pathophysiological states, in this case with a state of chronic OxS that provides a pro-carcinogenic microenvironment.


Subject(s)
Breast/cytology , Epithelial Cells/cytology , Oxidative Stress , Adult , Aldehydes/analysis , Biomarkers/analysis , Breast/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/chemistry , Cell Transformation, Neoplastic/pathology , Epithelial Cells/chemistry , Female , Humans , In Vitro Techniques , Reference Values , Spectroscopy, Fourier Transform Infrared , Stromal Cells/chemistry , Stromal Cells/cytology , Young Adult
7.
J Biophotonics ; 7(11-12): 906-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24343869

ABSTRACT

Coherent anti-Stokes Raman scattering (CARS) is becoming an established tool for label-free multi-photon imaging based on molecule specific vibrations in the sample. The technique has proven to be particularly useful for imaging lipids, which are abundant in cells and tissues, including cytoplasmic lipid droplets (LD), which are recognized as dynamic organelles involved in many cellular functions. The increase in the number of lipid droplets in cells undergoing cell proliferation is a common feature in many neoplastic processes [1] and an increase in LD number also appears to be an early marker of drug-induced cell stress and subsequent apoptosis [3]. In this paper, a CARS-based label-free method is presented to monitor the increase in LD content in HCT116 colon tumour cells treated with the chemotherapeutic drugs Etoposide, Camptothecin and the protein kinase inhibitor Staurosporine. Using CARS, LDs can easily be distinguished from other cell components without the application of fluorescent dyes and provides a label-free non-invasive drug screening assay that could be used not only with cells and tissues ex vivo but potentially also in vivo.


Subject(s)
Drug Screening Assays, Antitumor/methods , Lipid Droplets/chemistry , Neoplasms/metabolism , Spectrum Analysis, Raman/methods , Algorithms , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis , Camptothecin/administration & dosage , Cell Line, Tumor , Cell Proliferation , Cytoplasm/metabolism , Etoposide/administration & dosage , Fluorescent Dyes/chemistry , HCT116 Cells , Humans , Lipids/chemistry , Microscopy, Fluorescence/methods , Staurosporine/administration & dosage
8.
Bioanalysis ; 5(21): 2697-711, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24180508

ABSTRACT

Biospectroscopy is an emerging field that harnesses the platform of physical sciences with computational analysis in order to shed novel insights on biological questions. An area where this approach seems to have potential is in screening or diagnostic clinical settings, where there is an urgent need for new approaches to objectively interrogate large numbers of samples in an objective fashion with acceptable levels of sensitivity and specificity. This review outlines the benefits of biospectroscopy in screening for precancer lesions of the cervix due to its ability to separate different grades of dysplasia. It evaluates the feasibility of introducing this technique into cervical screening programs on the basis of its ability to identify biomarkers of progression within derived spectra ('biochemical­cell fingerprints').


Subject(s)
Uterine Cervical Neoplasms/diagnosis , Early Detection of Cancer/methods , Female , Humans , Mass Screening/methods , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/prevention & control
9.
Analyst ; 138(14): 3909-16, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23338619

ABSTRACT

Cervical cancer screening programmes have greatly reduced the burden associated with this disease. However, conventional cervical cytology screening still lacks sensitivity and specificity. There is an urgent need for the development of a low-cost robust screening technique. By generating a spectral "biochemical-cell fingerprint", Fourier-transform infrared (FTIR) spectroscopy has been touted as a tool capable of segregating grades of dysplasia. A total of 529 specimens were collected over a period of one year at two colposcopy centres in Dublin, Ireland. Of these, n = 128 were conventionally classed as high-grade, n = 186 as low-grade and n = 215 as normal. Following FTIR spectroscopy, derived spectra were examined for segregation between classes in scores plots generated with subsequent multivariate analysis. A degree of crossover between classes was noted and this could be associated with imperfect conventional screening resulting in an inaccurate diagnosis or an incomplete transition between classes. Maximal crossover associated with n = 102 of 390 specimens analyzed was found between normal and low-grade specimens. However, robust spectral differences (P≤ 0.0001) were still observed at 1512 cm(-1), 1331 cm(-1) and 937 cm(-1). For high-grade vs. low-grade specimens, spectral differences (P≤ 0.0001) were observed at Amide I (1624 cm(-1)), Amide II (1551 cm(-1)) and asymmetric phosphate stretching vibrations (νasPO2(-); 1215 cm(-1)). Least crossover (n = 50 of 343 specimens analyzed) was seen when comparing high-grade vs. normal specimens; significant inter-class spectral differences (P≤ 0.0001) were noted at Amide II (1547 cm(-1)), 1400 cm(-1) and 995 cm(-1). Deeper understanding of the underlying changes in the transition between cervical cytology classes (normal vs. low-grade vs. high-grade) is required in order to develop biospectroscopy tools as a screening approach. This will then allow for the development of blind classification algorithms.


Subject(s)
Cervix Uteri/pathology , Cytodiagnosis , Spectroscopy, Fourier Transform Infrared/methods , Uterine Cervical Neoplasms/diagnosis , Case-Control Studies , Colposcopy , Early Detection of Cancer , Female , Humans , Least-Squares Analysis , Neoplasm Grading , Neoplasm Staging , Principal Component Analysis , Vaginal Smears
10.
Analyst ; 138(1): 240-8, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23152953

ABSTRACT

Understanding stem cell (SC) biology remains challenging and one of the few human tissues within which their in situ location is well characterized is the cornea. Individual human corneal epithelial cells were isolated from biopsies of live tissues using fluorescence-activated cell sorting (FACS); these were divided into putative SCs, transit-amplifying (TA) cells and terminally-differentiated (TD) cells. Employing synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy with a focal plane array (FPA), sub-cellular spatial resolution analysis of unstained isolated cells was achieved as a consequence of the brilliance of a 12 collimated beams arrangement allowing rapid spectral acquisition. Infrared (IR) spectra were extracted and pre-processed. Subsequent categorization with multivariate analysis of IR spectra derived from FPA images was used to investigate biomolecular changes between classes. A progressive segregation in cell-specific spectral categories with differentiation from SC to TA cell to TD cell was noted. Multiple different absorption peaks that discriminated putative SCs, TA cells and TD cells across DNA, protein and lipid spectral regions were identified. DNA regions (1080 and 1225 cm(-1)) and some protein regions (1443 cm(-1)) primarily segregated SCs from TA cells and TD cells, whilst amide regions and lipids (1,550, 1650 and 1740 cm(-1)) segregated TA cells and TD cells. Scanning electron microscopy images verified the external phenotypic characteristics of the different isolated cell types. These findings highlight the applicability of SR-FTIR microspectroscopy towards distinguishing SCs, TA cells and TD cells, and suggest that cellular classification via traditional methods of immunolabelling can be greatly aided by the use of spectral biomarkers.


Subject(s)
Cornea/cytology , Intracellular Space/metabolism , Microtechnology/instrumentation , Molecular Imaging/instrumentation , Spectroscopy, Fourier Transform Infrared/instrumentation , Synchrotrons , Cell Separation , Discriminant Analysis , Humans , Principal Component Analysis
11.
Anal Bioanal Chem ; 404(6-7): 1745-58, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22945554

ABSTRACT

Normal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (λ = 2.5-25 µm), detecting vibrational transitions of chemical bonds. In this study, we exploited the cell's inherent biochemical composition to discriminate SCs of the inter-follicular skin epidermis based on IR-derived markers. Paraffin-embedded samples of human scalp skin (n = 4) were obtained, and 10-µm thick sections were mounted for IR spectroscopy. Samples were interrogated in transmission mode using synchrotron radiation-based Fourier-transform IR (FTIR) microspectroscopy (15 × 15 µm) and also imaged employing globar-source FTIR focal plane array (FPA) imaging (5.4 × 5.4 µm). Dependent on the location of derived spectra, wavenumber-absorbance/intensity relationships were examined using unsupervised principal component analysis. This approach showed clear separation and spectral differences dependent on cell type. Spectral biomarkers concurrently associated with segregation of SCs, transit-amplifying cells and terminally-differentiated cells of epidermis were primarily PO(2)(-) vibrational modes (1,225 and 1,080 cm(-1)), related to DNA conformational alterations. FPA imaging coupled with hierarchical cluster analysis also indicated the presence of specific basal layer cells potentially originating from the follicular bulge, suggested by co-clustering of spectra. This study highlights PO (2) (-) vibrational modes as potential putative SC markers.


Subject(s)
Hair Follicle/cytology , Molecular Imaging/methods , Spectroscopy, Fourier Transform Infrared/methods , Stem Cells/chemistry , Stem Cells/cytology , Biomarkers/analysis , Cell Differentiation , Epidermal Cells , Epidermis/chemistry , Hair Follicle/chemistry , Humans
12.
Biophys J ; 103(2): 357-64, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22853914

ABSTRACT

The chemical composition and sulfur (S) speciation of developing chick corneas at embryonic days 12, 14, and 16 were investigated using synchrotron scanning x-ray fluorescence microscopy and x-ray absorption near-edge structure spectroscopy. The aim was to develop techniques for the analysis of bulk tissue and identify critical physicochemical variations that correlate with changes in corneal structure-function relationships. Derived data were subjected to principal component analysis and linear discriminant analysis, which highlighted differences in the elemental and S species composition at different stages of embryonic growth. Notably, distinct elemental compositions of chlorine, potassium, calcium, phosphorus, and S altered with development during the transition of the immature opaque cornea to a mature transparent tissue. S structure spectroscopy revealed developmentally regulated alterations in thiols, organic monosulfides, ester sulfate, and inorganic sulfate species. The transient molecular structures and compositional changes reported here provide a deeper understanding of the underlying basis of corneal development during the acquisition of transparency. The experimental and analytical approach is new, to our knowledge, and has wide potential applicability in the life sciences.


Subject(s)
Cornea/embryology , Embryonic Development , Microscopy/methods , Sulfur/metabolism , X-Ray Absorption Spectroscopy/methods , Animals , Chick Embryo , Chickens , Discriminant Analysis , Principal Component Analysis , Thermodynamics , X-Rays
13.
Mutagenesis ; 27(3): 375-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22362182

ABSTRACT

The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has utility in the assessment of potential chemical carcinogenicity (both genotoxic and non-genotoxic mechanisms of action). The assay uses morphological transformation as an end point and has a reported sensitivity of 87%, specificity of 83% and overall concordance of 85% with in vivo rodent bioassay data. However, the scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with benzo[a]pyrene, 3-methylcholanthrene, anthracene, N-nitroso-N-methylnitroguanidine, ortho-toluidine HCl, 2,4-diaminotoluene or D-mannitol for 7 days before fixation with methanol. Identified colonies were interrogated by acquiring a minimum of five infrared (IR) spectra per colony using attenuated total reflection Fourier-transform IR spectroscopy. Individual IR spectra were acquired over a spatial area of approximately 250 × 250 µm. Resultant data were analysed using Fisher's linear discriminant analysis and feature histogram algorithms to extract classifying biomarkers of test agent-specific effects or transformation in SHE cells. Clustering of spectral points suggested co-segregation or discrimination of test agent categories based on mechanism of action. Towards transformation, unifying alterations were associated with alterations in the Amide I and Amide II peaks; these were consistently major classifying biomarkers for transformed versus non-transformed SHE cells. Our approach highlights a novel method towards objectively screening and classifying SHE cells, be it to ascertain test agent treatment based on mechanism of action or transformation.


Subject(s)
Carcinogens/classification , Cell Transformation, Neoplastic , Mutagens/classification , Animals , Biomarkers/metabolism , Carcinogens/toxicity , Cells, Cultured , Cricetinae , Data Interpretation, Statistical , Embryo, Mammalian/cytology , Hydrogen-Ion Concentration , Linear Models , Mesocricetus , Mutagenicity Tests/methods , Mutagens/toxicity , Spectroscopy, Fourier Transform Infrared
14.
Invest Ophthalmol Vis Sci ; 53(3): 1162-8, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22273722

ABSTRACT

PURPOSE: Biospectroscopy tools are increasingly being recognized as novel approaches toward interrogating complex biological structures in a nondestructive fashion. This study was conducted to apply these tools to interrogate alterations in the molecular signatures of developing chick corneas during the onset and development of transparency. METHODS: Embryonic chick corneas (n = 46) were obtained at 2-day intervals from embryonic day (E)10 to E18 of incubation and investigated with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and Raman microspectroscopy. Resultant spectra were analyzed for variance by using principal component analysis and linear discriminant analysis (PCA-LDA). RESULTS: Mean spectra after ATR-FTIR spectroscopy or Raman microspectroscopy derived from corneas at each developmental stage showed some overlap; however, in PCA-LDA scores plots, a clear segregation of spectra was evident, and two-category discrimination indicated that significant molecular alterations occur during tissue morphogenesis. Notable by both techniques was the increasing intensity of DNA signal (1080 cm⁻¹) from E10 onward. Major segregating biomarkers identified by ATR-FTIR spectroscopy between E10 and E18 were in the DNA/RNA (1126 cm⁻¹), glycogen (1045 cm⁻¹), protein (1470 cm⁻¹), and amide II (1512 cm⁻¹ and 1524 cm⁻¹) spectral regions. Raman spectroscopy also identified major distinguishing vibrational modes that included proteins, amino acids (tyrosine, proline phenylalanine, and valine), and secondary structures of proteins (amide I and amide II). CONCLUSIONS: The developing chick cornea undergoes significant changes in its biomolecular composition in the E10 to E18 developmental period, with the major changes occurring in the spectral regions associated with DNA/RNA, proteins, glycogen, and secondary protein structures.


Subject(s)
Cornea/metabolism , Protein Structure, Tertiary , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Biomarkers/analysis , Chick Embryo , Cornea/embryology , DNA/analysis , Multivariate Analysis , Principal Component Analysis
15.
Environ Pollut ; 163: 226-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22265761

ABSTRACT

With increasing production of carbon nanoparticles (CNPs), environmental release of these entities becomes an ever-greater inevitability. However, many questions remain regarding their impact on soil microorganisms. This study examined the effects of long or short multiwalled carbon nanotubes (MWCNTs), C60 fullerene and fullerene soot in Gram-negative bacteria. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was applied to derive signature spectral fingerprints of effects. A concentration-dependent response in spectral alterations was observed for each nanoparticle type. Long or short MWCNTs and fullerene soot gave rise to similar alterations to lipids, Amide II and DNA. The extent of alteration varies with nanoparticle size, with smaller short MWCNTs resulting in greater toxicity than long MWCNTs. Fullerene soot was the least toxic. C60 results in the most distinct and largest overall alterations, notably in extensive protein alteration. This work demonstrates a novel approach for assaying and discriminating the effects of CNPs in target systems.


Subject(s)
Gram-Negative Bacteria/drug effects , Nanotubes, Carbon/toxicity , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Fullerenes/toxicity , Multivariate Analysis , Spectroscopy, Fourier Transform Infrared , Toxicity Tests/methods
16.
Anal Methods ; 5: 89-102, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-24098310

ABSTRACT

The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral "fingerprints" of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis.

17.
ACS Nano ; 5(12): 9535-41, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22067076

ABSTRACT

We applied surface-enhanced Raman spectroscopy (SERS) to immunolabeled endothelial cells to derive enhanced spectra of the biomolecular makeup of the cellular surface. A two-step immunolabeling protocol with gold-conjugated antibodies coupled with silver enhancement to attach silver nanoparticles to the cell surface was employed. This approach generated ∼50-fold SERS enhancement of spectral signals. The SERS spectra exhibited several SERS-enhanced peaks associated with cell membrane components. The SERS detection of silver nanoparticles proved more far more sensitive than conventional light microscopy techniques. The SERS enhancement allowed us to carry out spectral mapping using wavenumbers associated with membrane components that correlated directly with the distribution of silver nanoparticles. SERS has the potential to detect immunolabeling at lower levels than is possible using conventional immunolabeling methods while simultaneously providing unique, spatially defined, biochemical information.


Subject(s)
Cell Membrane/metabolism , Epithelium, Corneal/metabolism , Epitope Mapping/methods , Immunohistochemistry/methods , Membrane Proteins/metabolism , Spectrum Analysis, Raman/methods , Cell Membrane/ultrastructure , Cells, Cultured , Epithelium, Corneal/cytology , Humans
18.
Environ Sci Technol ; 45(24): 10706-12, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22039864

ABSTRACT

Environmental contaminants accumulate in many organisms and induce a number of adverse effects. As contaminants mostly occur in the environment as mixtures, it remains to be fully understood which chemical interactions induce the most important toxic responses. In this study, we set out to determine the effects of chemical contaminants extracted from Northern Gannet (Morus bassanus) eggs (collected from the UK coast from three sampling years (1987, 1990, and 1992) on cell cultures using infrared (IR) spectroscopy with computational data handling approaches. Gannet extracts were chemically analyzed for different contaminants, and MCF-7 cell lines were treated for 24 h in a dose-related manner with individual-year extracts varying in their polybrominated diphenyl ether (PBDE) to polychlorinated biphenyl (PCB) ratios. Treated cellular material was then fixed and interrogated using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy; resultant IR spectra were computationally analyzed to derive dose-response relationships and to identify biomarkers associated with each contaminant mixture treatment. The results show distinct biomarkers of effect are related to each contamination scenario, with an inverse relationship with dose observed. This study suggests that specific contaminant mixtures induce cellular alterations in the DNA/RNA spectral region that are most pronounced at low doses. It also suggests alterations in the "biochemical-cell fingerprint" of IR spectra can be indicative of mixture exposures.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/toxicity , Ovum/metabolism , Animals , Biological Assay , Biota , Birds , Cell Line , Environmental Pollutants/metabolism , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/toxicity , Infrared Rays , Mammals , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/toxicity , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared
19.
Br J Med Med Res ; 1(4): 430-444, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22076318

ABSTRACT

AIMS: Ovarian cancer has the highest mortality of any gynaecological malignancy; this is due to rapid peritoneal spread of tumour cells and neovascularization. Understanding the mechanisms underlying this is critical to developing early diagnostic or treatment strategies. We devised a pilot study to examine the role of γ-SYNUCLEIN (γ-SYN), oestrogen receptor (ER)α, and the splice variant ERαΔ3. METHODOLOGY: With ethical approval, ovarian tissue was collected from patients (n=24) undergoing oopherectomy for non-ovarian pathology or primary surgery for suspected ovarian cancer. Quantitative gene expression analysis was employed for γ-SYN, ERα, and ERαΔ3. To identify the in situ localization, immunofluorescence for γ-syn was carried out. RESULTS: Ovarian tumour tissue exhibited an elevated expression of γ-SYN and high-grade tumours had an elevated ERαΔ3:ERα ratio compared with benign tissue. The majority of previous studies point to the γ-syn protein being present in epithelial cells of high-grade disease. Our study supports this, but additionally we conclusively identify its presence in the endothelial cells of vasculature surrounding low-grade disease; immunofluorescence was strongest in the apical cells surrounding the lumen. CONCLUSION: Our results demonstrate for the first time that there are readily-expressed levels of γ-SYN and ERαΔ3 in normal ovarian tissue and ovarian tumours. In high-grade disease, γ-syn and an elevated ERαΔ3:ERα ratio might confer metastatic potential to the tumourigenic cells and promote neoangiogenesis. Future in vitro studies might be necessary to delineate such a mechanism, which could potentially be the basis of early intervention.

20.
Analyst ; 136(23): 4950-9, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-21987108

ABSTRACT

Approaches that allow one to rapidly understand tissue structure and functionality in situ remain to be developed. Such techniques are required in many instances, including where there is a need to remove with a high degree of confidence positive tumour margins during surgical excision. As biological tissue has little contrast, gold standard confirmation of surgical margins is conventionally undertaken by histopathological diagnosis of tissue architecture via optical microscopy. Vibrational spectroscopy techniques, when coupled to sophisticated computational analyses, are capable of constructing bio-molecular contrast images of unstained tissue. To assess the relative applicability of a range of candidate algorithms to distinguish the in situ bio-molecular structures of a complex tissue, the empty modelling approach of multivariate curve resolution-alternating least squares (MCR-ALS) was compared to hierarchical cluster analysis (HCA) or principal component analysis (PCA). Such chemometric analyses were applied to Raman images of benign (tumour-adjacent) endometrium, stage I and stage II endometrioid cancer. Re-constructed images from the in situ bio-molecular tissue architectures highlighted features associated with glandular epithelium, stroma, glandular lumen and myometrium. Of the tested chemometric analyses, MCR-ALS provided the best bio-molecular contrast images, superior to those derived following HCA or PCA, with clear and defined margins of histological features. Iteratively-resolved spectra identified wavenumbers responsible for the contrast image. Wavenumbers 1234 cm(-1) (Amide III), 1390 cm(-1) (CH(3) bend), 1675 cm(-1) (Amide I/lipid), 1275 cm(-1) (Amide III), 918 cm(-1) (proline) and 936 cm(-1) (proline, valine and proteins) were responsible for generating the majority of the contrast within MCR-ALS-generated images. Applications of sophisticated computational analyses coupled with vibrational spectroscopy techniques have the potential to lend novel functionality insights into bio-molecular structures in vivo.


Subject(s)
Carcinoma, Endometrioid/pathology , Diagnostic Imaging/methods , Endometrial Neoplasms/pathology , Endometrium/pathology , Female , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...