Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7302, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508636

ABSTRACT

A clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years because of its critical role in the biosynthesis of lipopolysaccharides on bacterial cell surfaces. While many labs have discovered or designed novel small molecule inhibitors, these compounds lacked the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. Structural inspection of Kdo2-lipid A suggested aminoglycoside antibiotics as potential inhibitors for HepI. Multiple aminoglycosides have been experimentally validated to be first-in-class nanomolar inhibitors of HepI, with the best inhibitor demonstrating a Ki of 600 ± 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and molecular dynamics simulations were used to corroborate kinetic experimental findings. While aminoglycosides have long been described as potent antibiotics targeting bacterial ribosomes' protein synthesis leading to disruption of the stability of bacterial cell membranes, more recently researchers have shown that they only modestly impact protein production. Our research suggests an alternative and novel mechanism of action of aminoglycosides in the inhibition of HepI, which directly leads to modification of LPS production in vivo. This finding could change our understanding of how aminoglycoside antibiotics function, with interruption of LPS biosynthesis being an additional and important mechanism of aminoglycoside action. Further research to discern the microbiological impact of aminoglycosides on cells is warranted, as inhibition of the ribosome may not be the sole and primary mechanism of action. The inhibition of HepI by aminoglycosides may dramatically alter strategies to modify the structure of aminoglycosides to improve the efficacy in fighting bacterial infections.


Subject(s)
Aminoglycosides , Lipopolysaccharides , Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Glycosyltransferases/metabolism , Lipopolysaccharides/pharmacology
2.
Biochemistry ; 59(34): 3135-3147, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32011131

ABSTRACT

Gram-negative bacterial viability is greatly reduced by the disruption of heptose sugar addition during the biosynthesis of lipopolysaccharide (LPS), an important bacterial outer membrane component. Heptosyltransferase I (HepI), a member of the GT-B structural subclass of glycosyltransferases, is therefore an essential enzyme for the biosynthesis of the LPS. The disruption of HepI also increases the susceptibility of bacteria to hydrophobic antibiotics, making HepI a potential target for drug development. In this work, the structural and dynamic properties of the catalytic cycle of HepI are explored. Previously, substrate-induced stabilization of HepI was observed and hypothesized to be assisted by interactions between the substrate and residues located on dynamic loops. Herein, positively charged amino acids were probed to identify binding partners of the negatively charged phosphates and carboxylates of Kdo2-lipid A and its analogues. Mutant enzymes were characterized to explore changes in enzymatic activities and protein stability. Molecular modeling of HepI in the presence and absence of ligands was then performed with the wild type and mutant enzyme to allow determination of the relative change in substrate binding affinity resulting from each mutation. Together, these studies suggest that multiple residues are involved in mediating substrate binding, and a lack of additivity of these effects illustrates the functional redundancy of these binding interactions. The redundancy of residues mediating conformational transitions in HepI illustrates the evolutionary importance of these structural rearrangements for catalysis. This work enhances the understanding of HepI's protein dynamics and mechanism and is a model for improving our understanding of glycosyltransferase enzymes.


Subject(s)
Escherichia coli/enzymology , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...