Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(6): 1138-1142, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38306609

ABSTRACT

Engineering biosynthetic pathways to ribosomally synthesized and post-translationally modified peptides (RiPPs) offers several advantages for both in vivo and in vitro applications. Here we probe the ability of peptide cyclases to generate trimacrocycle microviridin analogs with non-native cross-links. The results demonstrate that diverse chemistries are tolerated by macrocyclases in the ATP-grasp family and allow for the construction of unique cyclic peptide architectures that retain protease inhibition activity. In addition, cocomplex structures of analogs bound to a model protease were determined, illustrating how changes in functional groups maintain peptide conformation and target binding.


Subject(s)
Peptides, Cyclic , Peptides , Peptides, Cyclic/chemistry , Peptides/chemistry , Peptide Hydrolases
2.
mSphere ; 8(5): e0028323, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37594261

ABSTRACT

A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation, AID2, systems work efficiently and rapidly in the human pathogenic yeasts, Candida albicans and Candida glabrata. We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid. Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens. IMPORTANCE Life-threatening fungal infections are an escalating human health problem, complicated by limited treatment options and the evolution of drug resistant pathogen strains. Identification of new targets for therapeutics to combat invasive fungal infections, including those caused by Candida species, is an urgent need. In this report, we establish and validate an inducible protein degradation methodology in Candida albicans and Candida glabrata that provides a new tool for protein functional characterization in these, and likely other, fungal pathogen species. We expect this tool will ultimately be useful for the identification and characterization of promising drug targets and factors involved in virulence and drug resistance.


Subject(s)
Candida , Mycoses , Humans , Proteolysis , Candida albicans/genetics , Mycoses/drug therapy , Candida glabrata/genetics
3.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37293017

ABSTRACT

A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation AID2 systems work efficiently and rapidly in the human pathogenic yeasts Candida albicans and Candida glabrata . We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid (5-Ad-IAA). Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens.

4.
J Org Chem ; 86(16): 11212-11219, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34263606

ABSTRACT

Microviridins are cyanobacterial tricyclic depsipeptides with unique ring architectures and function as serine protease inhibitors. In this study, we explore two strategies to probe the structure and mechanism of macrocyclases involved in microviridin biosynthesis. The results both provide approaches for in vitro chemoenzymatic synthesis and insight into the molecular interactions and function of the biosynthetic enzymes. The first strategy involves generating constitutively activated macrocyclases whereby the leader portion of the substrate peptide is covalently attached to the ATP-grasp ligases to examine leader peptide/enzyme interactions. The second strategy uses a structure-based design to create disulfide cross-linked peptide/enzyme complexes. Together, the strategies provide constitutively active enzymes and tools to study the catalysis of the macrocyclizations on synthetic core peptides.


Subject(s)
Cyanobacteria , Peptides , Ligases , Serine Proteinase Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...