Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pattern Recognit Lett ; 153: 176-182, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35938044

ABSTRACT

Channel attention mechanisms in convolutional neural networks have been proven to be effective in various computer vision tasks. However, the performance improvement comes with additional model complexity and computation cost. In this paper, we propose a light-weight and effective attention module, called channel diversification block, to enhance the global context by establishing the channel relationship at the global level. Unlike other channel attention mechanisms, the proposed module focuses on the most discriminative features by giving more attention to the spatially distinguishable channels while taking account of the channel activation. Different from other attention models that plugin the module in between several intermediate layers, the proposed module is embedded at the end of the backbone networks, making it easy to implement. Extensive experiments on CIFAR-10, SVHN, and Tiny-ImageNet datasets demonstrate that the proposed module improves the performance of the baseline networks by a margin of 3% on average.

2.
Proc Int Robot Vis Conf ; 2021: 181-188, 2021 May.
Article in English | MEDLINE | ID: mdl-34368816

ABSTRACT

Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.

3.
PLoS One ; 16(8): e0255809, 2021.
Article in English | MEDLINE | ID: mdl-34403452

ABSTRACT

Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate. Colonoscopy is the preferred procedure for CRC screening and has proven to be effective in reducing CRC mortality. Thus, a reliable computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy. In this paper, we create an endoscopic dataset collected from various sources and annotate the ground truth of polyp location and classification results with the help of experienced gastroenterologists. The dataset can serve as a benchmark platform to train and evaluate the machine learning models for polyp classification. We have also compared the performance of eight state-of-the-art deep learning-based object detection models. The results demonstrate that deep CNN models are promising in CRC screening. This work can serve as a baseline for future research in polyp detection and classification.


Subject(s)
Colonic Polyps/classification , Colonoscopy , Colonic Polyps/pathology , Colorectal Neoplasms/diagnosis , Humans , Machine Learning , Neural Networks, Computer
4.
Sci Rep ; 11(1): 7580, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828196

ABSTRACT

Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological research, species-level identification is expensive, time consuming, and requires specialized taxonomic training. However, deep learning and computer vision are providing ways to open this methodological bottleneck through automated identification from images. Focusing on bumble bees, we compare four convolutional neural network classification models to evaluate prediction speed, accuracy, and the potential of this technology for automated bee identification. We gathered over 89,000 images of bumble bees, representing 36 species in North America, to train the ResNet, Wide ResNet, InceptionV3, and MnasNet models. Among these models, InceptionV3 presented a good balance of accuracy (91.6%) and average speed (3.34 ms). Species-level error rates were generally smaller for species represented by more training images. However, error rates also depended on the level of morphological variability among individuals within a species and similarity to other species. Continued development of this technology for automatic species identification and monitoring has the potential to be transformative for the fields of ecology and conservation. To this end, we present BeeMachine, a web application that allows anyone to use our classification model to identify bumble bees in their own images.


Subject(s)
Artificial Intelligence , Bees/anatomy & histology , Bees/classification , Deep Learning , Animals , Conservation of Natural Resources , Databases, Factual , Ecosystem , Image Processing, Computer-Assisted , Neural Networks, Computer , North America , Pigmentation , Pollination , Species Specificity
5.
PLoS One ; 15(7): e0236452, 2020.
Article in English | MEDLINE | ID: mdl-32730279

ABSTRACT

Colorectal cancer is the third most common cancer diagnosed in both men and women in the United States. Most colorectal cancers start as a growth on the inner lining of the colon or rectum, called 'polyp'. Not all polyps are cancerous, but some can develop into cancer. Early detection and recognition of the type of polyps is critical to prevent cancer and change outcomes. However, visual classification of polyps is challenging due to varying illumination conditions of endoscopy, variant texture, appearance, and overlapping morphology between polyps. More importantly, evaluation of polyp patterns by gastroenterologists is subjective leading to a poor agreement among observers. Deep convolutional neural networks have proven very successful in object classification across various object categories. In this work, we compare the performance of the state-of-the-art general object classification models for polyp classification. We trained a total of six CNN models end-to-end using a dataset of 157 video sequences composed of two types of polyps: hyperplastic and adenomatous. Our results demonstrate that the state-of-the-art CNN models can successfully classify polyps with an accuracy comparable or better than reported among gastroenterologists. The results of this study can guide future research in polyp classification.


Subject(s)
Colonic Polyps/classification , Neural Networks, Computer , Algorithms , Deep Learning , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...