Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(19): 4625-4630, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27592744

ABSTRACT

Previous efforts from our laboratory demonstrated that (E)-3-((3-(E)-vinylaryl)-1H-indazol-6-yl)methylene)-indolin-2-ones are potent PLK4 inhibitors with in vivo anticancer efficacy upon IP dosing. As part of a continued effort to develop selective and orally efficacious inhibitors, we examined variations on this theme wherein 'directly-linked' aromatics, pendant from the indazole core, replace the arylvinyl moiety. Herein, we describe the design and optimization of this series which was ultimately superseded by (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones. The latter compounds are potent and selective inhibitors of PLK4 with oral exposure in rodents and in vivo anticancer activity. Compound 13b, in particular, has a bioavailability of 22% and achieved a 96% tumor growth inhibition in an MDA-MB-468 xenograft study.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Cell Line, Tumor , Drug Design , Heterografts , Humans , Indoles/administration & dosage , Indoles/pharmacokinetics , Mice , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Rats
2.
ACS Med Chem Lett ; 7(7): 671-5, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437075

ABSTRACT

This work describes a scaffold hopping exercise that begins with known imidazo[1,2-a]pyrazines, briefly explores pyrazolo[1,5-a][1,3,5]triazines, and ultimately yields pyrazolo[1,5-a]pyrimidines as a novel class of potent TTK inhibitors. An X-ray structure of a representative compound is consistent with 1(1)/2 type inhibition and provides structural insight to aid subsequent optimization of in vitro activity and physicochemical and pharmacokinetic properties. Incorporation of polar moieties in the hydrophobic and solvent accessible regions modulates physicochemical properties while maintaining potency. Compounds with enhanced oral exposure were identified for xenograft studies. The work culminates in the identification of a potent (TTK K i = 0.1 nM), highly selective, orally bioavailable anticancer agent (CFI-402257) for IND enabling studies.

3.
J Med Chem ; 58(8): 3366-92, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25763473

ABSTRACT

The acetamido and carboxamido substituted 3-(1H-indazol-3-yl)benzenesulfonamides are potent TTK inhibitors. However, they display modest ability to attenuate cancer cell growth; their physicochemical properties, and attendant pharmacokinetic parameters, are not drug-like. By eliminating the polar 3-sulfonamide group and grafting a heterocycle at the 4 position of the phenyl ring, potent inhibitors with oral exposure were obtained. An X-ray cocrystal structure and a refined binding model allowed for a structure guided approach. Systematic optimization resulted in novel TTK inhibitors, namely 3-(4-(heterocyclyl)phenyl)-1H-indazole-5-carboxamides. Compounds incorporating the 3-hydroxy-8-azabicyclo[3.2.1]octan-8-yl bicyclic system were potent (TTK IC50 < 10 nM, HCT116 GI50 < 0.1 µM), displayed low off-target activity (>500×), and microsomal stability (T(1/2) > 30 min). A subset was tested in rodent PK and mouse xenograft models of human cancer. Compound 75 (CFI-401870) recapitulated the phenotype of TTK RNAi, demonstrated in vivo tumor growth inhibition upon oral dosing, and was selected for preclinical evaluation.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Indazoles/chemistry , Indazoles/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Colon/drug effects , Colon/enzymology , Colon/pathology , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Crystallography, X-Ray , Female , Humans , Indazoles/administration & dosage , Indazoles/pharmacology , Mice, Nude , Models, Molecular , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism
4.
J Med Chem ; 58(1): 147-69, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25723005

ABSTRACT

Previous publications from our laboratory have introduced novel inhibitors of Polo-like kinase 4 (PLK4), a mitotic kinase identified as a potential target for cancer therapy. The search for potent and selective PLK4 inhibitors yielded (E)-3-((1Hindazol-6-yl)methylene)indolin-2-ones, which were superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones, e.g., 3. The later scaffold confers improved drug-like properties and incorporates two stereogenic centers. This work reports the discovery of a novel one-pot double SN2 displacement reaction for the stereoselective installation of the desired asymmetric centers and confirms the stereochemistry of the most potent stereoisomer, e.g., 44. Subsequent work keys on the optimization of the oral exposure of nanomolar PLK4 inhibitors with potent cancer cell growth inhibitory activity. A short list of compounds with superior potency and pharmacokinetic properties in rodents and dogs was studied in mouse models of tumor growth. We conclude with the identification of compound 48 (designated CFI-400945) as a novel clinical candidate for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Indazoles/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/analysis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Discovery , Female , HCT116 Cells , Humans , Indazoles/chemistry , Indazoles/pharmacokinetics , Indoles/chemistry , Indoles/pharmacokinetics , MCF-7 Cells , Male , Mice, Nude , Mice, SCID , Models, Chemical , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
J Med Chem ; 58(1): 130-46, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24867403

ABSTRACT

Polo-like kinase 4 (PLK4), a unique member of the polo-like kinase family of serine-threonine kinases, is a master regulator of centriole duplication that is important for maintaining genome integrity. Overexpression of PLK4 is found in several human cancers and is linked with a predisposition to tumorigenesis. Previous efforts to identify potent and efficacious PLK4 inhibitors resulted in the discovery of (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones, which are superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones reported herein. Optimization of this new cyclopropane-linked series was based on a computational model of a PLK4 X-ray structure and SAR attained from the analogous alkenelinked series. The racemic cyclopropane-linked compounds showed PLK4 affinity and antiproliferative activity comparable to their alkene-linked congeners with improved hysicochemical, ADME, and pharmacokinetic properties. Positive xenograft results from the MDA-MB-468 human breast cancer xenograft model for compound 18 support the investigation of PLK4 inhibitors as anticancer therapeutics. A PLK4 X-ray co-structure with racemate 18 revealed preferential binding of the 1R,2S enantiomer to the PLK4 kinase domain.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Spiro Compounds/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Indoles/chemistry , Indoles/pharmacokinetics , MCF-7 Cells , Mice , Models, Chemical , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Rats , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem ; 22(17): 4968-97, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25043312

ABSTRACT

TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.6nM) demonstrated good activity in cell based assay and selectivity against a panel of human kinases. A co-complex TTK X-ray crystal structure and results of a xenograft study with TTK inhibitors from this class are described.


Subject(s)
Amides/pharmacology , Benzeneacetamides/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Benzeneacetamides/chemical synthesis , Benzeneacetamides/chemistry , Cell Cycle Proteins/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...