Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(16): 9117-9123, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32301473

ABSTRACT

Exposing a thiol-functionalised gold nanoparticle film chemiresistor to methanol in aqueous solution results in only a small electric current response as the thiol ligand/water partition coefficient of methanol is small, leading to only minor swelling of the chemiresistor film. Nevertheless, the current response to methanol can be enhanced if the chemiresistor becomes pre-exposed to a molecule with a large ligand/water partition coefficient P (e.g. octane with Po = 104.3). The large response enhancement is achieved because methanol, when added to an aqueous solution of octane, lowers the large initial partition coefficient of octane. Octane exiting the thiol ligands then leads to strong film shrinkage resulting in a relative current change much greater than the one otherwise induced by methanol alone. This was theoretically modelled for octane and heptane (Ph = 103.6). A strong response enhancement to methanol (>20 times) was observed experimentally by exposure to 2 ppm octane compared to direct testing of methanol in aqueous solution. Besides octane and heptane, molecules with P > 107 (e.g. permethrin) can theoretically be used to provide enhancement factors of several orders of magnitude. For practical reasons, heptane and octane saturate more quickly, thus enabling more rapid detection of methanol than higher P organic molecules.

2.
Proc Natl Acad Sci U S A ; 114(3): 451-456, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28028213

ABSTRACT

We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats.


Subject(s)
Silk/chemistry , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Bombyx , Cryoelectron Microscopy , Fibroins/chemistry , Hydrogels , Materials Testing , Nanostructures/chemistry , Nanotechnology , Phase Transition , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...