Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 47(3): 429-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38441647

ABSTRACT

Thauera is the most widely found dominant denitrifying genus in wastewater. In earlier study, MBBR augmented with a specially developed denitrifying five-membered bacterial consortium (DC5) where Thauera was found to be the most abundant and persistent genus. Therefore, to check the functional potential of Thauera in the removal of nitrate-containing wastewater in the present study Thauera sp.V14 one of the member of the consortium DC5 was used as the model organism. Thauera sp.V14 exhibited strong hydrophobicity, auto-aggregation ability, biofilm formation and denitrification ability, which indicated its robust adaptability short colonization and nitrate removal efficiency. Continuous reactor studies with Thauera sp.V14 in 10 L dMBBR showed 91% of denitrification efficiency with an initial nitrate concentration of 620 mg L-1 within 3 h of HRT. Thus, it revealed that Thauera can be employed as an effective microorganism for nitrate removal from wastewater based on its performance in the present studies.


Subject(s)
Nitrates , Wastewater , Thauera , Biofilms , Denitrification , Bioreactors/microbiology , Nitrogen
2.
World J Microbiol Biotechnol ; 37(4): 68, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33748870

ABSTRACT

Biological denitrification is the most promising alternative approach for the removal of nitrate from wastewater. MBBR inoculated with activated sludge is a widely studied approach, but very few studies have focused on the bioaugmentation of biofilm forming bacteria in MBBR. Our study revealed that the use of special microbial seed of biofilm forming denitrifying bacteria Diaphorobacter sp. R4, Pannonibacter sp. V5, Thauera sp. V9, Pseudomonas sp.V11, and Thauera sp.V14 to form biofilm on carriers enhanced nitrate removal performance of developed MBBR. Various process parameters C/N ratio 0.3, HRT 3 h at Nitrate loading 2400 mg L-1, Filling ratio 20%, operated with Pall ring carrier were optimized to achieve highest nitrate removal. After 300 days of continuous operation results of whole genome metagenomic studies showed that Thauera spp. were the most dominant and key contributor to the denitrification of nitrate containing wastewater and the reactor was totally conditioned for denitrification. Overall, findings suggest that bench-scale MBBR developed with biofilm forming denitrifying microbial seed accelerated the denitrification process; therefore in conclusion it is suggested as one of the best suitable and effective approach for removal of nitrate from wastewater.


Subject(s)
Biofilms/growth & development , Bioreactors , Denitrification , Nitrates/metabolism , Amyloid/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Benzothiazoles , Kinetics , Nitrogen/metabolism , Pseudomonas , Sewage , Wastewater , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...