Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 64(12): 4709-4726, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38865599

ABSTRACT

Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.


Subject(s)
DNA , Histones , Molecular Dynamics Simulation , Nucleosomes , Histones/chemistry , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , DNA/chemistry , DNA/metabolism , Acetylation , Protein Conformation , Principal Component Analysis
2.
J Phys Chem B ; 128(13): 3090-3101, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530903

ABSTRACT

The basic packaging unit of eukaryotic chromatin is the nucleosome that contains 145-147 base pair duplex DNA wrapped around an octameric histone protein. While the DNA sequence plays a crucial role in controlling the positioning of the nucleosome, the molecular details behind the interplay between DNA sequence and nucleosome dynamics remain relatively unexplored. This study analyzes this interplay in detail by performing all-atom molecular dynamics simulations of nucleosomes, comparing the human α-satellite palindromic (ASP) and the strong positioning "Widom-601" DNA sequence at time scales of 12 µs. The simulations are performed at salt concentrations 10-20 times higher than physiological salt concentrations to screen the electrostatic interactions and promote unwrapping. These microsecond-long simulations give insight into the molecular-level sequence-dependent events that dictate the pathway of DNA unwrapping. We find that the "ASP" sequence forms a loop around SHL ± 5 for three sets of simulations. Coincident with loop formation is a cooperative increase in contacts with the neighboring N-terminal H2B tail and C-terminal H2A tail and the release of neighboring counterions. We find that the Widom-601 sequence exhibits a strong breathing motion of the nucleic acid ends. Coincident with the breathing motion is the collapse of the full N-terminal H3 tail and formation of an α-helix that interacts with the H3 histone core. We postulate that the dynamics of these histone tails and their modification with post-translational modifications (PTMs) may play a key role in governing this dynamics.


Subject(s)
Histones , Nucleosomes , Humans , Histones/chemistry , Chromatin , DNA/chemistry , Molecular Dynamics Simulation
3.
Methods Mol Biol ; 2570: 13-38, 2023.
Article in English | MEDLINE | ID: mdl-36156771

ABSTRACT

Oligonucleotide ligands (DNA, RNA, or XNA), also known as aptamers, are selected against various target molecules using an iterative, evolutionary process called systematic evolution of ligands by exponential enrichment (SELEX). To select aptamers against complex cell surface proteins in their native state, a variant of SELEX termed ligand-guided selection (LIGS) was recently introduced. The significance of LIGS is rooted in its strategy of exploiting the selection step in SELEX to identify highly specific aptamers against known cell surface markers. Thus, in LIGS, a higher-affinity secondary ligand, such as a monoclonal antibody (mAb) to a whole-cell bound to an evolved SELEX library, is introduced to outcompete sequences against the mAb targeting cell surface protein or induce a conformational switch to destabilize the aptamer-surface cell surface protein resulting in elution of the sequences. Here, we describe the detailed method of LIGS utilized in identifying aptamers against T-cell receptor cluster of differentiation three complex (TCR-CD3) expressed in human T-cells and T-cell leukemia.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Antibodies, Monoclonal , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Humans , Ligands , RNA , Receptors, Antigen, T-Cell , SELEX Aptamer Technique/methods
4.
Biochemistry ; 61(15): 1600-1613, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35829681

ABSTRACT

Aptamer ligand discovery against multiple molecules expressed on whole cells is an essential component in molecular tool development. However, owing to their intrinsic structural characteristics, cell-surface receptors have proven to be challenging targets in ligand discovery. Several variants to systematic evolution of ligands by exponential enrichment (SELEX) have been introduced to address the ″target problem″ for aptamer screening. To this end, we introduced a variant of SELEX, termed ligand-guided selection (LIGS), to identify highly specific aptamers against complex cell-surface markers in their native state. So far, the application of LIGS has been aimed at identifying aptamers against the most dominant receptors on the cell surface. Here, we report that LIGS can be expanded to identify two receptors on the same cell surface, paving the way to generate a multiplexed ligand discovery platform based on SELEX-targeting membrane receptors in their native functional state. Using CD19 and CD20 expressed on Toledo cells as a model system, multiple aptamer families were evolved against Toledo cells. We then utilized two monoclonal antibodies (mAbs) against CD20 and CD19 to selectively partition specific aptamers against CD19 and CD20. Following biochemical characterization, we introduce two specific aptamers against CD19 and two specific aptamers against CD20 with high affinity. Multi-target LIGS, as reported here, demonstrates a successful combinatorial approach for nucleic acid library screening to generate multiple artificial nucleic acid ligands against multiple receptors expressed on a single cell.


Subject(s)
Aptamers, Nucleotide , Nucleic Acids , Aptamers, Nucleotide/chemistry , Gene Library , Humans , Ligands , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...