Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(10): 1668-1681, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36781220

ABSTRACT

While the physical signs of opioid withdrawal are most readily observable, withdrawal insidiously drives relapse and contributes to compulsive drug use, by disrupting emotional learning circuits. How these circuits become disrupted during withdrawal is poorly understood. Because amygdala neurons mediate relapse, and are highly opioid sensitive, we hypothesized that opioid withdrawal would induce adaptations in these neurons, opening a window of disrupted emotional learning circuit function. Under normal physiological conditions, synaptic transmission between the basolateral amygdala (BLA) and the neighboring main island (Im) of GABAergic intercalated cells (ITCs) is strongly inhibited by endogenous opioids. Using patch-clamp electrophysiology in brain slices prepared from male rats, we reveal that opioid withdrawal abruptly reduces the ability of these peptides to inhibit neurotransmission, a direct consequence of a protein kinase A (PKA)-driven increase in the synaptic activity of peptidases. Reduced peptide control of neurotransmission in the amygdala shifts the excitatory/inhibitory balance of inputs onto accumbens-projecting amygdala cells involved in relapse. These findings provide novel insights into how peptidases control synaptic activity within the amygdala and presents restoration of endogenous peptide activity during withdrawal as a viable option to mitigate withdrawal-induced disruptions in emotional learning circuits and rescue the relapse behaviors exhibited during opioid withdrawal and beyond into abstinence.SIGNIFICANCE STATEMENT We find that opioid withdrawal dials down inhibitory neuropeptide activity in the amygdala. This disrupts both GABAergic and glutamatergic transmission through amygdala circuits, including reward-related outputs to the nucleus accumbens. This likely disrupts peptide-dependent emotional learning processes in the amygdala during withdrawal and may direct behavior toward compulsive drug use.


Subject(s)
Analgesics, Opioid , Substance Withdrawal Syndrome , Rats , Male , Animals , Analgesics, Opioid/pharmacology , Amygdala/physiology , Synaptic Transmission/physiology , Peptides/pharmacology , Substance Withdrawal Syndrome/metabolism , Peptide Hydrolases/metabolism
2.
Nano Lett ; 22(1): 517-523, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34962401

ABSTRACT

We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.


Subject(s)
Microtubules , Protons , Biophysics , Cytoplasm/physiology , Hydrogen-Ion Concentration , Microtubules/metabolism
3.
Front Mol Biosci ; 8: 650757, 2021.
Article in English | MEDLINE | ID: mdl-33842549

ABSTRACT

Microtubules are highly negatively charged proteins which have been shown to behave as bio-nanowires capable of conducting ionic currents. The electrical characteristics of microtubules are highly complicated and have been the subject of previous work; however, the impact of the ionic concentration of the buffer solution on microtubule electrical properties has often been overlooked. In this work we use the non-linear Poisson Boltzmann equation, modified to account for a variable permittivity and a Stern Layer, to calculate counterion concentration profiles as a function of the ionic concentration of the buffer. We find that for low-concentration buffers ([KCl] from 10 µM to 10 mM) the counterion concentration is largely independent of the buffer's ionic concentration, but for physiological-concentration buffers ([KCl] from 100 to 500 mM) the counterion concentration varies dramatically with changes in the buffer's ionic concentration. We then calculate the conductivity of microtubule-counterion complexes, which are found to be more conductive than the buffer when the buffer's ionic concentrations is less than ≈100 mM and less conductive otherwise. These results demonstrate the importance of accounting for the ionic concentration of the buffer when analyzing microtubule electrical properties both under laboratory and physiological conditions. We conclude by calculating the basic electrical parameters of microtubules over a range of ionic buffer concentrations applicable to nanodevice and medical applications.

4.
Small ; 17(1): e2003560, 2021 01.
Article in English | MEDLINE | ID: mdl-33295102

ABSTRACT

Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2 cm2  (V s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.


Subject(s)
Polymers , Tubulin , Microtubules , Static Electricity
5.
ACS Nano ; 14(12): 16301-16320, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33213135

ABSTRACT

Microtubules are hollow, cylindrical polymers of the protein α, ß tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.

6.
Sci Rep ; 10(1): 2108, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034179

ABSTRACT

Memristors represent the fourth electrical circuit element complementing resistors, capacitors and inductors. Hallmarks of memristive behavior include pinched and frequency-dependent I-V hysteresis loops and most importantly a functional dependence of the magnetic flux passing through an ideal memristor on its electrical charge. Microtubules (MTs), cylindrical protein polymers composed of tubulin dimers are key components of the cytoskeleton. They have been shown to increase solution's ionic conductance and re-orient in the presence of electric fields. It has been hypothesized that MTs also possess intrinsic capacitive and inductive properties, leading to transistor-like behavior. Here, we show a theoretical basis and experimental support for the assertion that MTs under specific circumstances behave consistently with the definition of a memristor. Their biophysical properties lead to pinched hysteretic current-voltage dependence as well a classic dependence of magnetic flux on electric charge. Based on the information about the structure of MTs we provide an estimate of their memristance. We discuss its significance for biology, especially neuroscience, and potential for nanotechnology applications.


Subject(s)
Electric Conductivity , Microtubules/metabolism , Biophysical Phenomena , Electric Impedance , Microtubules/chemistry , Nanotechnology , Neural Networks, Computer , Tubulin/chemistry , Tubulin/metabolism
7.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033331

ABSTRACT

Microtubules are hollow cylindrical polymers composed of the highly negatively-charged (~23e), high dipole moment (1750 D) protein α, ß- tubulin. While the roles of microtubules in chromosomal segregation, macromolecular transport, and cell migration are relatively well-understood, studies on the electrical properties of microtubules have only recently gained strong interest. Here, we show that while microtubules at physiological concentrations increase solution capacitance, free tubulin has no appreciable effect. Further, we observed a decrease in electrical resistance of solution, with charge transport peaking between 20-60 Hz in the presence of microtubules, consistent with recent findings that microtubules exhibit electric oscillations at such low frequencies. We were able to quantify the capacitance and resistance of the microtubules (MT) network at physiological tubulin concentrations to be 1.27 × 10-5 F and 9.74 × 104 Ω. Our results show that in addition to macromolecular transport, microtubules also act as charge storage devices through counterionic condensation across a broad frequency spectrum. We conclude with a hypothesis of an electrically tunable cytoskeleton where the dielectric properties of tubulin are polymerisation-state dependent.

8.
Br J Pharmacol ; 177(2): 420-431, 2020 01.
Article in English | MEDLINE | ID: mdl-31596498

ABSTRACT

BACKGROUND AND PURPOSE: Pain is a subjective experience involving sensory discriminative and emotionally aversive components. Consistent with its role in pain processing and emotions, the amygdala modulates the aversive component of pain. The laterocapsular region of the central nucleus of the amygdala (CeLC) receives nociceptive information from the parabrachial nucleus (PB) and polymodal, including nociceptive, inputs from the basolateral nucleus of the amygdala (BLA). Opioids are strong analgesics and reduce both the sensory discriminative and the affective component of pain. However, it is unknown whether opioids regulate activity at the two nociceptive inputs to the amygdala. EXPERIMENTAL APPROACH: Using whole-cell electrophysiology, optogenetics, and immunohistochemistry, we investigated whether opioids inhibit the rat PB-CeLC and BLA-CeLC synapses. KEY RESULTS: Opioids inhibited glutamate release at the PB-CeLC and BLA-CeLC synapses. Opioid inhibition is via the µ-receptor at the PB-CeLC synapse, while at the BLA-CeLC synapse, inhibition is via µ-receptors in all neurons and via δ-receptors and κ-receptors in a subset of neurons. CONCLUSIONS AND IMPLICATIONS: Agonists of µ-receptors inhibited two of the synaptic inputs carrying nociceptive information into the laterocapsular amygdala. Therefore, µ-receptor agonists, such as morphine, will inhibit glutamate release from PB and BLA in the CeLC, and this could serve as a mechanism through which opioids reduce the affective component of pain and pain-induced associative learning. The lower than expected regulation of BLA synaptic outputs by δ-receptors does not support the proposal that opioid receptor subtypes segregate into subnuclei of brain regions.


Subject(s)
Amygdala/drug effects , Analgesics, Opioid/pharmacology , Nociception/drug effects , Nociceptive Pain/prevention & control , Pain Perception/drug effects , Synapses/drug effects , Amygdala/metabolism , Amygdala/physiopathology , Animals , Glutamic Acid/metabolism , Male , Neural Inhibition/drug effects , Nociceptive Pain/metabolism , Nociceptive Pain/physiopathology , Optogenetics , Rats, Sprague-Dawley , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Synapses/metabolism
9.
Eur J Neurosci ; 50(3): 2065-2074, 2019 08.
Article in English | MEDLINE | ID: mdl-30099803

ABSTRACT

Neural circuits in the amygdala are important for associating the positive experience of drug taking with the coincident environmental cues. During abstinence, cue re-exposure activates the amygdala, increases dopamine release in the amygdala and stimulates relapse to drug use in an opioid dependent manner. Neural circuits in the amygdala and the learning that underlies these behaviours are inhibited by GABAergic synaptic inhibition. A specialised subtype of GABAergic neurons in the amygdala are the clusters of intercalated cells. We focussed on the main-island of intercalated cells because these neurons, located ventromedial to the basolateral amygdala, express very high levels of dopamine D1-receptor and µ-opioid receptor, release enkephalin and are densely innervated by the ventral tegmental area. However, where these neurons project to was not fully described and their regulation by opioids and dopamine was incomplete. To address this issue we electrically stimulated in the main-island of the intercalated cells in rat brain slices and made patch-clamp recordings of GABAergic synaptics from amygdala neurons. We found that main-island neurons had a strong GABAergic inhibitory output to pyramidal neurons of the basolateral nucleus and the medial central nucleus, the major output zones of the amygdala. Opioids inhibited both these synaptic outputs of the intercalated neurons and thus would disinhibit these target zones. Additionally, dopamine acting at D1-receptors inhibited main-island neuron synapses onto other main-island neurons. This data indicates that the inhibitory projections from the main-island neurons could influence multiple aspects of addiction and emotional processing in an opioid and dopamine dependent manner.


Subject(s)
Analgesics, Opioid/pharmacology , Dopamine/pharmacology , Synapses/drug effects , Ventral Tegmental Area/drug effects , Animals , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...