Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(5): 7428-7439, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089684

ABSTRACT

Intermixing of atomic species at the electrode-electrolyte boundaries can impact the properties of the interfaces in solid-state batteries. Herein, this work uses first-principles statistical mechanics along with experimental characterization to understand intermixing at the electrode-electrolyte interface. For the model presented in this work, lithium manganese oxide (LiMn2O4, LMO) and lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) are employed as the cathode and electrolyte, respectively. The results of the computational work show that Ti-Mn intermixing at the interface is significant at synthesis temperatures. The experimental results in this work find that, at some critical temperatures between 600 and 700 °C for material preparation, the interface of LLTO-LMO becomes blurred. Calculations predict that the interface is unstable with regard to Ti-Mn intermixing starting at 0 K, suggesting that the critical temperature found in the experiment is related to kinetics. The work overall suggests that, in designing a solid-state battery, the fundamental reactions such as intermixing need to be considered.

2.
J Am Chem Soc ; 142(41): 17730-17742, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32933252

ABSTRACT

Eighteen new quaternary chalcogenides AGaM'Q4 (A+ = K+, Rb+, Cs+, Tl+; M'4+ = Ge4+, Sn4+; Q2- = S2-, Se2-) have been prepared by solid-state syntheses and structurally characterized using single-crystal X-ray diffraction techniques. These new phases crystallize in a variety of layered structure types. The tin analogues also adopt an extended three-dimensional network structure as polymorphs. The polymorphism and phase-stability in these cases were studied by thermal analysis and high-temperature in situ X-ray powder diffraction. All compounds are semiconductors with the colored selenides absorbing light in the infrared-green region (1.8 eV < Eg < 2.3 eV) and the mostly white sulfides absorbing light in the blue-ultraviolet range (2.5 eV < Eg < 3.6 eV). Based on third-harmonic generation (THG) measurements, the third-order nonlinear optical (NLO) susceptibilities χ(3) of the new and previously reported AGaM'Q4 compounds were determined. These measurements revealed an apparent correlation between the THG response of the sample and its band gap, rather than the crystal structure type. While low-gap materials possess higher nonlinearity in general, we found that layered orthorhombic RbGaGeS4 exhibits an impressive χ(3) value (about four times larger than that of AgGaS2) even with a large band gap and shows stability under ambient conditions with no significant irradiation damage.

4.
Evol Med Public Health ; 2015(1): 195-203, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26198189

ABSTRACT

BACKGROUND AND OBJECTIVES: Capture myopathy (CM) syndromes in wildlife may be a model for human stress cardiomyopathy, including Takotsubo cardiomyopathy. Emotional stress or grief may trigger heart attack-like symptoms, and occasionally, sudden death in some humans. Similarly, wildlife exposed to predatory stresses, chase, or capture occasionally results in sudden death. To better understand the nature of vulnerability to stress-induced sudden death, we studied cases of CM in hooved mammals-ungulates-and hypothesized that CM would be associated with a syndrome of longevity-related traits. METHODOLOGY: We reconstructed the evolution of CM in ungulates then determined how a set of life history traits explained variation in the likelihood that CM was reported. RESULTS: CM is broadly reported, but not in all genera, and phylogenetic analyses suggest that it is an evolutionarily labile trait. We found that the following traits were significantly associated with reports of CM: greater brain mass, faster maximum running speed, greater minimum group size and greater maximum longevity. CONCLUSIONS AND IMPLICATIONS: CM may be an unavoidable consequence of adaptations to reduce predation risk that include increased running speed, sociality and having larger brains. Moreover, longer-lived species seem to be more likely to be susceptible to CM. Exploring variable susceptibility to CM highlights the evolutionary origins of the disorder, potential basic mechanisms that underlie vulnerability to the phenomenon, and the potential for reduction of risk through modification of life history trajectory.

SELECTION OF CITATIONS
SEARCH DETAIL
...