Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 75(24): 5329-40, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26631267

ABSTRACT

Antibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acid-linker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm. To identify candidate transporters, we performed a phenotypic shRNA screen with an anti-CD70 maytansine-based ADC. This screen revealed the lysosomal membrane protein SLC46A3, the genetic attenuation of which inhibited the potency of multiple noncleavable antibody-maytansine ADCs, including ado-trastuzumab emtansine. In contrast, the potencies of noncleavable ADCs carrying the structurally distinct monomethyl auristatin F were unaffected by SLC46A3 attenuation. Structure-activity experiments suggested that maytansine is a substrate for SLC46A3. Notably, SLC46A3 silencing led to relative increases in catabolite concentrations in the lysosome. Taken together, our results establish SLC46A3 as a direct transporter of maytansine-based catabolites from the lysosome to the cytoplasm, prompting further investigation of SLC46A3 as a predictive response marker in breast cancer specimens.


Subject(s)
Antineoplastic Agents, Phytogenic/metabolism , Immunoconjugates/metabolism , Maytansine/metabolism , Membrane Transport Proteins/metabolism , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Line, Tumor , Cytoplasm/metabolism , Drug Delivery Systems , Humans , Immunoconjugates/administration & dosage , Lysosomes/metabolism , Maytansine/administration & dosage
2.
Drug Metab Dispos ; 43(9): 1341-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26101225

ABSTRACT

Antibody drug conjugates are emerging as a powerful class of antitumor agents with efficacy across a range of cancers; therefore, understanding the disposition of this class of therapeutic is crucial. Reported here is a method of enriching a specific organelle (lysosome) to understand the catabolism of an anti-CD70 Ab-MCC-DM1, an antibody drug conjugate with a noncleavable linker. With such techniques a higher degree of concentration-activity relationship can be established for in vitro cell lines; this can aid in understanding the resultant catabolite concentrations necessary to exert activity.


Subject(s)
Immunoconjugates/metabolism , Lysosomes/metabolism , Pharmaceutical Preparations/metabolism , CD27 Ligand/immunology , Cell Line, Tumor , Humans
3.
Br J Clin Pharmacol ; 78(6): 1315-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24803302

ABSTRACT

AIMS: AMG 181 pharmacokinetics/pharmacodynamics (PK/PD), safety, tolerability and effects after single subcutaneous (s.c.) or intravenous (i.v.) administration were evaluated in a randomized, double-blind, placebo-controlled study. METHODS: Healthy male subjects (n= 68) received a single dose of AMG 181 or placebo at 0.7, 2.1, 7, 21, 70 mg s.c. (or i.v.), 210 mg s.c. (or i.v.), 420 mg i.v. or placebo. Four ulcerative colitis (UC) subjects (n= 4, male : female 2:2) received 210 mg AMG 181 or placebo s.c. (3:1). AMG 181 concentration, anti-AMG 181-antibody (ADA), α4 ß7 receptor occupancy (RO), target cell counts, serum C-reactive protein, fecal biomarkers and Mayo score were measured. Subjects were followed 3-9 months after dose. RESULTS: Following s.c. dosing, AMG 181 was absorbed with a median tmax ranging between 2-10 days and a bioavailability between 82% and 99%. Cmax and AUC increased dose-proportionally and approximately dose-proportionally, respectively, within the 70-210 mg s.c. and 70-420 mg i.v. ranges. The linear ß-phase t1/2 was 31 (range 20-48) days. Target-mediated disposition occurred at serum AMG 181 concentrations of less than 1 µg ml(-1) . The PD effect on α4 ß7 RO showed an EC50 of 0.01 µg ml(-1) . Lymphocytes, eosinophils, CD4+ T cells and subset counts were unchanged. AMG 181-treated UC subjects were in remission with mucosal healing at weeks 6, 12 and/or 28. The placebo-treated UC subject experienced colitis flare at week 6. No ADA or AMG 181 treatment-related serious adverse events were observed. CONCLUSIONS: AMG 181 has PK/PD, safety, and effect profiles suitable for further testing in subjects with inflammatory bowel diseases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , CD4-Positive T-Lymphocytes/drug effects , Double-Blind Method , Female , Humans , Male
4.
Bioanalysis ; 5(9): 1041-55, 2013 May.
Article in English | MEDLINE | ID: mdl-23641695

ABSTRACT

BACKGROUND: Immunogenicity testing is an important component of clinical development for large-molecule biotherapeutics. New complex types of large molecules, such as antibody-drug conjugates (ADCs), require careful evaluation of the testing strategy and bioanalytical assays used to monitor the development of antitherapeutic antibodies. RESULTS: An electrochemiluminescence-based immunoassay for the detection and epitope characterization of anti-ADC antibodies was validated. Using this assay format, antibodies directed against the monoclonal antibody and linker-drug components of the ADC were successfully detected in a multiple-dose rat toxicity study. CONCLUSION: Immunogenicity assays incorporating epitope determination may provide additional information about the characteristics of induced antitherapeutic antibodies, including the magnitude and timing of the various types of antibody responses.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Immunoconjugates/blood , Immunoconjugates/immunology , Immunogenetic Phenomena/immunology , Pharmaceutical Preparations/blood , Animals , Antibodies, Monoclonal/therapeutic use , Antigen-Antibody Reactions , Humans , Immunoconjugates/therapeutic use
5.
Curr Drug Metab ; 13(7): 930-7, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22475267

ABSTRACT

Exposure to cytokines can down-regulate hepatic cytochrome P450 enzymes. Accordingly, relief of inflammation by cytokinetargeted drug therapy has the potential to up-regulate cytochrome P450s and thereby increase clearance of co-administered drugs. This study examined the effects of the inflammatory cytokine, interleukin 1ß (IL-1ß), and IL-1ß/interleukin 6 (IL-6) combinations on drug metabolizing enzymes in human hepatocyte culture. Treatment of hepatocytes with IL-1ß revealed suppression of mRNA expression of several clinically important cytochrome P450 isoenzymes, with EC50 values that differed by isoenzyme. Suppression of CYP1A2 activity by IL-1ß could not be measured in 3 of 5 donors due to lack of response, and in the two remaining donors the average EC50 was 450 pg/mL. CYP3A activity had an EC50 of suppression of 416 ± 454 pg/mL. Measurable EC50s were obtained for all 5 donors for CYP2C8, 3A4, 3A5, 4A11 and IL-6R mRNA with fold differences which varied between 9.5-fold (CYP2C8) to 109-fold (CYP4A11). When hepatocytes were treated with IL-1ß and IL-6 in combination at concentrations which ranged from 1-100 pg/mL, IL-6 was the main determinant of increases in acute phase response marker mRNA and of decreases in CYP3A4 mRNA. There was no synergy between IL-1ß and IL-6 in the regulation of cytochrome P450 mRNA when dosed in combination, although the effects of the two cytokines in combination were additive in certain instances. These data indicate that IL-1ß and IL-6 both suppress cytochrome P450 mRNA and enzyme levels in vitro and that, at similar physiologically-relevant concentrations in vitro, IL-6 is more potent than IL-1ß.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/metabolism , Interleukin-1beta/administration & dosage , Interleukin-6/administration & dosage , Pharmaceutical Preparations/metabolism , Cell Culture Techniques , Drug Combinations , Humans
6.
Biochem Pharmacol ; 83(12): 1682-9, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22425536

ABSTRACT

Changes in cytochrome P450 expression incurred by inflammatory disease were studied in a murine collagen antibody induced arthritis (CAIA) model and compared to bacterial lipopolysaccharide-treated mice and to cytochrome P450 changes in primary mouse hepatocytes following combination treatments with cytokines IL-1ß, IL-6, or TNFα. CAIA in female mice increased serum IL-1ß, IL-6 and hepatic serum amyloid A (SAA) mRNA and significantly altered cytochrome P450 mRNA and activity levels. Most cytochrome P450 isoforms were down-regulated, although some, such as Cyp3a13, were up-regulated. Cytokine effects on cytochrome P450 levels in mouse hepatocytes were compared at in vitro cytokine concentrations similar to those measured in CAIA mouse serum in vivo. In vivo and in vitro cytochrome P450 suppression by cytokines was congruent for some cytochrome P450 isoforms (Cyp1a2, Cyp2c29, and Cyp3a11) but not for others (cytochrome P450 oxidoreductase (POR) and Cyp2e1). In mouse hepatocytes, IL-6 and IL-1ß in combination in vitro caused a synergistic increase in SAA mRNA expression, but not in cytochrome P450 suppression. IL-1ß and IL-6 were equipotent in the suppression of cytochrome P450 gene expression, while TNFα caused mild suppression only at the highest concentrations used. TNFα in combination with IL-1ß, IL-6, or both had a protective effect against IL-1ß and IL-6-mediated cytochrome P450 suppression. When IL-1ß or IL-6 was combined with low concentrations of TNFα, several P450 isoforms were induced rather than suppressed. These data highlight the complexities of performing in vitro-in vivo comparisons using disease models for cytochrome P450 regulation by cytokines.


Subject(s)
Arthritis, Experimental/immunology , Cytochrome P-450 Enzyme Inhibitors , Hepatocytes/cytology , Animals , Cells, Cultured , Female , Gene Expression , Hepatocytes/enzymology , Mice , Mice, Inbred BALB C
7.
Drug Metab Dispos ; 39(8): 1415-22, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21555507

ABSTRACT

The cytokine-mediated suppression of hepatic drug-metabolizing enzymes by inflammatory disease and the relief of this suppression by successful disease treatment have recently become an issue in the development of drug interaction labels for new biological products. This study examined the effects of the inflammatory cytokine interleukin-6 (IL-6) on drug-metabolizing enzymes in human hepatocyte culture and the abrogation of these effects by a monoclonal antibody directed against IL-6. Treatment of human hepatocytes with IL-6 (n = 9 donors) revealed pan-suppression of mRNA of 10 major cytochrome P450 isoenzymes, but with EC(50) values that differed by isoenzyme. Some EC(50) values were above the range of clinically relevant serum concentrations of IL-6. Marker activities for CYP1A2 and CYP3A4 enzyme were similarly suppressed by IL-6 in both freshly isolated and cryopreserved hepatocytes. IL-6 suppressed induction of CYP1A2 enzyme activity by omeprazole and CYP3A4 enzyme activity by rifampicin but only at supraphysiological concentrations of IL-6. Glycosylated and nonglycosylated IL-6 did not significantly differ in their ability to suppress CYP1A2 and CYP3A4 enzyme activity. A monoclonal antibody directed against IL-6 abolished or partially blocked IL-6-mediated suppression of CYP1A2 and CYP3A4 enzyme activity, respectively. These data indicate that experimentation with IL-6 and anti-IL-6 monoclonal antibodies in human hepatocyte primary culture can quantitatively measure cytochrome P450 suppression and desuppression and determine EC(50) values for IL-6 against individual cytochrome P450 isoenzymes. However, the complex biology of inflammatory disease may not allow for quantitative in vitro-in vivo extrapolation of these simple in vitro data.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Hepatocytes/drug effects , Interleukin-6/pharmacology , Pharmaceutical Preparations/metabolism , Antibodies, Monoclonal/immunology , C-Reactive Protein/immunology , Cell Culture Techniques , Cytochrome P-450 CYP1A2/biosynthesis , Cytochrome P-450 CYP1A2 Inhibitors , Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A Inhibitors , HEK293 Cells , Hepatocytes/enzymology , Hepatocytes/immunology , Humans , Interleukin-6/immunology , Isoenzymes , Models, Biological , Protein Binding , Receptors, Interleukin-6/biosynthesis , Serum Amyloid A Protein/immunology , Tandem Mass Spectrometry , Time Factors , Transfection
8.
Mol Carcinog ; 38(3): 141-54, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14587099

ABSTRACT

Hydroquinone (HQ) is a rodent carcinogen and a potential human carcinogen. Glutathione conjugation of HQ enhances its biological reactivity, and 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ) is a potent nephrotoxicant and nephrocarcinogen in the Eker rat. Moreover, a single exposure of primary epithelial cells derived from Eker rat kidneys to TGHQ transforms these cells into an immortalized phenotype (quinol-thioether transformed rat renal epithelial (QT-RRE) cells). The Eker rat bears a mutation in one allele of the tuberous sclerosis-2 (Tsc-2) tumor suppressor gene, which predisposes the animals to the development of spontaneous and chemical-induced renal cell carcinoma. Thus, the Eker rat provides a unique model for elucidating the mechanisms of renal tubular epithelial carcinogeneisis. cDNA microarray analysis of QT-RRE3 cells and of tumor tissue derived from the kidneys of Eker rats treated with TGHQ revealed alterations (by threefold or greater) in the expression of a total of 80 genes. Fifteen percent of these genes exhibited similar expression patterns in both QT-RRE cells and tumor tissue. The differentially expressed genes primarily participate in three major areas: (1) signal transduction or in the regulation of signal transduction (extracellular signal regulated kinase 2 (ERK2); protein kinase CK2; protein kinase B; c-jun; NF-kappaB; ras-related GTPases; annexins), (2) stress response, tissue remodeling, and DNA repair (glutathione-S-transferases; procollagen c proteinase enhancer; plasminogen activator; tissue inhibitor of metalloprotease 3; apurinic/apyrimidic endonuclease), and (3) electron transport and energy homeostasis (cytochrome c oxidase subunits). The changes in the expression of many of these genes was confirmed by reverse transcription (RT)-polymerase chain reactions (PCR) using primers specific for the differentially expressed genes. As an example, the annexin I and II genes, implicated in signal transduction, were highly induced in tumor tissue and also in dysplastic lesions isolated from the kidneys of rats treated chronically with TGHQ. The annexin I and II proteins were also upregulated in tumor tissue, which probably play an important role in TGHQ-induced nephrocarcinogenesis. Moreover, in the present study, a tumorigenicity assay using athymic nude mice revealed that QT-RRE cell lines formed tumors when injected in the subcutis of nude mice, providing evidence that the cells are malignantly transformed. Histopathological analysis further indicated that the tumors were composed of neoplastic cells, resembling renal carcinoma cells with varying degrees of atypia, with the presence of apoptotic and mitotic figures.


Subject(s)
Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glutathione/analogs & derivatives , Glutathione/toxicity , Hydroquinones/toxicity , Kidney Neoplasms/genetics , Neoplasm Proteins/genetics , Animals , Blotting, Western , Carcinoma, Renal Cell/chemically induced , Carcinoma, Renal Cell/pathology , Cell Division/drug effects , Epithelial Cells/drug effects , Gene Expression Profiling , Kidney/drug effects , Kidney Neoplasms/chemically induced , Kidney Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Rats , Rats, Mutant Strains
9.
Carcinogenesis ; 24(3): 573-82, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12663520

ABSTRACT

The Tsc-2 tumor suppressor gene encodes the protein tuberin, a multi-functional protein with sequence homology to the GTPase activating protein (GAP) for Rap1. Mutations in the Tsc-2 gene are associated with the development of renal tumors. The Eker rat (Tsc-2(EK/+)) bears a mutation in one allele of the Tsc-2 gene, which predisposes these animals to renal cancer. Treatment of wild-type (Tsc-2(+/+)) and mutant (Tsc-2(EK/+)) Eker rats with 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ; 7.5 micro mol/kg. i.v.), a potent redox active and nephrotoxic metabolite of hydroquinone increases the incidence of renal tumors only in animals carrying the mutant Tsc-2(EK/+) allele. We now show that the constitutive expression of 8-oxoguanine-DNA glycosylase (OGG1) in Tsc-2(EK/+) rats is three-fold lower than in wild-type Tsc-2(+/+) rats. Moreover, treatment of wild-type and mutant Eker rats with TGHQ greatly increases 8-oxo-deoxyguanosine (8-oxo-dG) levels within the outer stripe of the outer medulla. Tsc-2(EK/+) rats, with lower constitutive renal OGG1 expression, experience substantially higher levels of 8-oxo-dG than do wild type Tsc-2(+/+) rats. Interestingly, whereas OGG1 expression was rapidly (4 h) induced in Tsc-2(+/+) rats following exposure to TGHQ, it was significantly reduced in Tsc-2(EK/+) rats. The combination of the higher constitutive expression of OGG1 in Tsc-2(+/+) rats, and its rapid induction in response to TGHQ treatment, coupled to the initial decrease in OGG1 expression in Tsc-2(EK/+) rats, results in Tsc-2(EK/+) OGG1 protein levels just 5% of those seen in Tsc-2(+/+) rats 8 h after treatment. Coincidentally, 8-oxo-dG levels in Tsc-2(+/+) rats 8 h after treatment with TGHQ are just 5% of those that occur in Tsc-2(EK/+) rats. The results indicate that the Tsc-2 gene influences constitutive OGG1 expression and the ability of OGG1 to respond to an oxidative stress, consistent with the proposal that Tsc-2 is an acute-phase response gene. In keeping with this view, acute TGHQ-induced cytotoxicity was greater in Tsc-2(EK/+) rats than in Tsc-2(+/+) rats. The mechanism(s) coupling tuberin expression to the regulation of OGG1 are not known and are under investigation.


Subject(s)
DNA Damage , Glutathione/analogs & derivatives , N-Glycosyl Hydrolases/metabolism , Oxidative Stress , Repressor Proteins/physiology , Animals , Chromatography, High Pressure Liquid , DNA-Formamidopyrimidine Glycosylase , Electrochemistry , Fluorescent Antibody Technique , Glutathione/pharmacology , Hydroquinones/pharmacology , Kidney/drug effects , Male , Rats , Rats, Mutant Strains , Repressor Proteins/genetics , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...