Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0292525, 2023.
Article in English | MEDLINE | ID: mdl-37930986

ABSTRACT

Hydrothermal vents are extreme environments, where abundant communities of copepods with contrasting life history traits co-exist along hydrothermal gradients. Here, we discuss how these traits may contribute to the observed differences in molecular diversity and population genetic structure. Samples were collected from vent locations across the globe including active ridges and back-arc basins and compared to existing deep-sea hydrothermal vent and shallow water data, covering a total of 22 vents and 3 non-vent sites. A total of 806 sequences of mtDNA from the Cox1 gene were used to reconstruct the phylogeny, haplotypic relationship and demography within vent endemic copepods (Dirivultidae, Stygiopontius spp.) and non-vent-endemic copepods (Ameiridae, Miraciidae and Laophontidae). A species complex within Stygiopontius lauensis was studied across five pacific back-arc basins at eight hydrothermal vent fields, with cryptic species being restricted to the basins they were sampled from. Copepod populations from the Lau, North Fiji and Woodlark basins are undergoing demographic expansion, possibly linked to an increase in hydrothermal activity in the last 10 kya. Highly structured populations of Amphiascus aff. varians 2 were also observed from the Lau to the Woodlark basins with populations also undergoing expansion. Less abundant harpacticoids exhibit little to no population structure and stable populations. This study suggests that similarities in genetic structure and demography may arise in vent-associated copepods despite having different life history traits. As structured meta-populations may be at risk of local extinction should major anthropogenic impacts, such as deep-sea mining, occur, we highlight the importance of incorporating a trait-based approach to investigate patterns of genetic connectivity and demography, particularly regarding area-based management tools and environmental management plans.


Subject(s)
Copepoda , Hydrothermal Vents , Life History Traits , Animals , Copepoda/genetics , DNA, Mitochondrial , Mitochondria/genetics , Phylogeny , Ecosystem
2.
BMC Genomics ; 22(1): 625, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418978

ABSTRACT

BACKGROUND: Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS: In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS: Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.


Subject(s)
Metagenomics , Research Design , Animals , Genome , Genomics , Humans , Sequence Analysis, DNA
3.
Mol Phylogenet Evol ; 121: 86-97, 2018 04.
Article in English | MEDLINE | ID: mdl-29258880

ABSTRACT

Cladogenesis is often driven by the interplay of dispersal and vicariance. The importance of long-distance dispersal in biogeography and speciation is increasingly recognised, but still ill-understood. Here, we study faunal interconnectivity between four large Brazilian floodplains, namely the Amazon, Araguaia, Pantanal (on Paraguay River) and Upper Paraná River floodplains, investigating a species complex of the non-marine ostracod genus Strandesia. We use DNA sequence data from the mitochondrial COI and the nuclear Elongation Factor 1 alpha genes to construct molecular phylogenies and minimum spanning networks, to identify genetic species, analyse biogeographic histories and provide preliminary age estimates of this species complex. The Strandesia species complex includes five morphological and eleven genetic species, which doubles the known diversity in this lineage. The evolutionary history of this species complex appears to comprise sequences of dispersal and vicariance events. Faunal and genetic patterns of connectivity between floodplains in some genetic species are mirrored in modern hydrological connections. This could explain why we find evidence for (aquatic) long-distance dispersal between floodplains, thousands of kilometres apart. Our phylogenetic reconstructions seem to mostly indicate recent dispersal and vicariance events, but the evolution of the present Strandesia species complex could span up to 25 Myr, which by far exceeds the age of the floodplains and the rivers in their current forms.


Subject(s)
Animal Migration/physiology , Aquatic Organisms/physiology , Crustacea/anatomy & histology , Crustacea/physiology , Animals , Bayes Theorem , Brazil , Electron Transport Complex IV/genetics , Evolution, Molecular , Genetic Speciation , Geography , Paraguay , Phylogeny , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...