Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5520, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127363

ABSTRACT

Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3'-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.


Subject(s)
RNA-Binding Proteins , Zebrafish , Adenosine/genetics , Animals , Immunity, Innate/genetics , Inosine/genetics , Mammals/genetics , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
2.
EMBO J ; 40(15): e107134, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34180064

ABSTRACT

Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial-associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+ ) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta-b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2-mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA-mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.


Subject(s)
Diabetic Retinopathy/genetics , Protein Kinase C beta/genetics , RNA, Long Noncoding/genetics , Zebrafish/genetics , Aged , Aged, 80 and over , Animals , Animals, Genetically Modified , Case-Control Studies , Diabetic Retinopathy/physiopathology , Embryo, Nonmammalian , Endothelium, Vascular , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Middle Aged , Permeability , Protein Kinase C beta/metabolism , RNA, Long Noncoding/blood , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
CRISPR J ; 3(4): 299-313, 2020 08.
Article in English | MEDLINE | ID: mdl-32833532

ABSTRACT

RNA interference is a powerful experimental tool for RNA knockdown, but not all organisms are amenable. Here, we provide a proof of principle demonstration that a type III Csm effector complex can be used for programmable mRNA transcript degradation in eukaryotes. In zebrafish, Streptococcus thermophilus Csm complex (StCsm) proved effective for knockdown of maternally expressed EGFP in germ cells of Tg(ddx4:ddx4-EGFP) fish. It also led to significant, albeit less drastic, fluorescence reduction at one day postfertilization in Tg(myl7:GFP) and Tg(fli1:EGFP) fish that express EGFP zygotically. StCsm targeted against the endogenous tdgf1 elicited the characteristic one-eyed phenotype with greater than 50% penetrance, and hence with similar efficiency to morpholino-mediated knockdown. We conclude that Csm-mediated knockdown is very efficient for maternal transcripts and can also be used for mixed maternal/early zygotic and early zygotic transcripts, in some cases reaching comparable efficiency to morpholino-based knockdown without significant off-target effects.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , RNA Stability , Zebrafish/genetics , Animals , Animals, Genetically Modified , Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Messenger/metabolism , Streptococcus thermophilus/enzymology
4.
Front Immunol ; 11: 5, 2020.
Article in English | MEDLINE | ID: mdl-32038655

ABSTRACT

Acute systemic Gram-negative bacterial infections are accompanied by release of lipopolysaccharide (LPS) endotoxins into the bloodstream and an innate immune host response via the well-known toll like receptor 4 (TLR4) pathway. In this, LPS associates non-covalently with TLR4 to form an activated heterodimer (LPS/MD2/TLR4)2 complex in vivo, assisted by a coreceptor CD14. This complexation process has been illustrated ex vivo using indirect methods such as cytokine, interleukin, TNF-α measurements and by direct demonstration of sequential binding events on a surface using advanced optics. We are the first ones to carry out homogeneous self-assembly of LPS-rTLR4-MD2 conjugates in vitro in a single step, and further demonstrate the role of CD14 as a catalyst during this process. The assay comprises of LPS, MD2, CD14, and recombinant TLR4-conjugated magnetic particles co-incubated in a buffer at room temperature. The complexes are removed by magnetic separation and the extent of binding is estimated by quantifying the unbound biomolecules in the supernatant using standard biophysical techniques. Our results show that rTLR4-MD2-LPS complexes form in an hour and follow a 1:1:1 stoichiometry, in agreement with the in vivo/ex vivo studies. The assay is also highly specific; addition of known LPS-binding ligands decreased the LPS-rTLR4 complexation, allowing its use as a rapid tool for molecular inhibitor screening.


Subject(s)
Biological Assay/methods , Endotoxins/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Lymphocyte Antigen 96/metabolism , Toll-Like Receptor 4/metabolism , Blotting, Western , Dynamic Light Scattering , Endotoxins/immunology , Humans , Immunity, Innate , In Vitro Techniques/methods , Kinetics , Ligands , Lipopolysaccharides/immunology , Protein Binding , Recombinant Proteins/metabolism , Signal Transduction/immunology , Silver Staining
SELECTION OF CITATIONS
SEARCH DETAIL
...