Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biochem J ; 479(14): 1533-1542, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35789254

ABSTRACT

A patient diagnosed with multiple myeloma, bicuspid aortic valve, and Von Hippel-Lindau syndrome underwent whole-exome sequencing seeking a unified genetic cause for these three pathologies. The patient possessed a single-point mutation of arginine to cysteine (R24C) in the N-terminal region(pro-domain) of matrix metalloproteinase 9 (MMP-9). The pro-domain interacts with the catalytic site of this enzyme rendering it inactive. MMP-9 has previously been associated with all three pathologies suffered by the patient. We hypothesized that the observed mutation in the pro-domain would influence the activity of this enzyme. We expressed recombinant versions of MMP-9 and an investigation of their biochemical properties revealed that MMP-9 R24C is a constitutively active zymogen. To our knowledge, this is the first example of a mutation that discloses catalytic activity in the pro-form in any of the 24 human MMPs.


Subject(s)
Bicuspid Aortic Valve Disease , Multiple Myeloma , von Hippel-Lindau Disease , Gain of Function Mutation , Humans , Matrix Metalloproteinase 9/genetics , Multiple Myeloma/complications , Multiple Myeloma/genetics , von Hippel-Lindau Disease/complications , von Hippel-Lindau Disease/genetics
2.
Sci Rep ; 12(1): 5807, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388065

ABSTRACT

VEGF inhibitor drugs are part of standard care in oncology and ophthalmology, but not all patients respond to them. Combinations of drugs are likely to be needed for more effective therapies of angiogenesis-related diseases. In this paper we describe naturally occurring combinations of receptors in endothelial cells that might help to understand how cells communicate and to identify targets for drug combinations. We also develop and share a new software tool called DECNEO to identify them. Single-cell gene expression data are used to identify a set of co-expressed endothelial cell receptors, conserved among species (mice and humans) and enriched, within a network, of connections to up-regulated genes. This set includes several receptors previously shown to play a role in angiogenesis. Multiple statistical tests from large datasets, including an independent validation set, support the reproducibility, evolutionary conservation and role in angiogenesis of these naturally occurring combinations of receptors. We also show tissue-specific combinations and, in the case of choroid endothelial cells, consistency with both well-established and recent experimental findings, presented in a separate paper. The results and methods presented here advance the understanding of signaling to endothelial cells. The methods are generally applicable to the decoding of intercellular combinations of signals.


Subject(s)
Endothelial Cells , Transcriptome , Angiogenesis Inhibitors/pharmacology , Animals , Endothelial Cells/metabolism , Humans , Mice , Neovascularization, Pathologic/metabolism , Reproducibility of Results
3.
EMBO Mol Med ; 14(1): e14511, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34779136

ABSTRACT

In the course of our studies aiming to discover vascular bed-specific endothelial cell (EC) mitogens, we identified leukemia inhibitory factor (LIF) as a mitogen for bovine choroidal EC (BCE), although LIF has been mainly characterized as an EC growth inhibitor and an anti-angiogenic molecule. LIF stimulated growth of BCE while it inhibited, as previously reported, bovine aortic EC (BAE) growth. The JAK-STAT3 pathway mediated LIF actions in both BCE and BAE cells, but a caspase-independent proapoptotic signal mediated by cathepsins was triggered in BAE but not in BCE. LIF administration directly promoted activation of STAT3 and increased blood vessel density in mouse eyes. LIF also had protective effects on the choriocapillaris in a model of oxidative retinal injury. Analysis of available single-cell transcriptomic datasets shows strong expression of the specific LIF receptor in mouse and human choroidal EC. Our data suggest that LIF administration may be an innovative approach to prevent atrophy associated with AMD, through protection of the choriocapillaris.


Subject(s)
Geographic Atrophy , Leukemia Inhibitory Factor , Mitogens , Animals , Choroid/blood supply , Choroid/metabolism , Endothelial Cells/metabolism , Geographic Atrophy/metabolism , Janus Kinases/metabolism , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Mice , Mitogens/metabolism , Mitogens/pharmacology , STAT3 Transcription Factor/metabolism
4.
PeerJ ; 9: e10670, 2021.
Article in English | MEDLINE | ID: mdl-33520459

ABSTRACT

MOTIVATION: Analysis of singe cell RNA sequencing (scRNA-seq) typically consists of different steps including quality control, batch correction, clustering, cell identification and characterization, and visualization. The amount of scRNA-seq data is growing extremely fast, and novel algorithmic approaches improving these steps are key to extract more biological information. Here, we introduce: (i) two methods for automatic cell type identification (i.e., without expert curator) based on a voting algorithm and a Hopfield classifier, (ii) a method for cell anomaly quantification based on isolation forest, and (iii) a tool for the visualization of cell phenotypic landscapes based on Hopfield energy-like functions. These new approaches are integrated in a software platform that includes many other state-of-the-art methodologies and provides a self-contained toolkit for scRNA-seq analysis. RESULTS: We present a suite of software elements for the analysis of scRNA-seq data. This Python-based open source software, Digital Cell Sorter (DCS), consists in an extensive toolkit of methods for scRNA-seq analysis. We illustrate the capability of the software using data from large datasets of peripheral blood mononuclear cells (PBMC), as well as plasma cells of bone marrow samples from healthy donors and multiple myeloma patients. We test the novel algorithms by evaluating their ability to deconvolve cell mixtures and detect small numbers of anomalous cells in PBMC data. AVAILABILITY: The DCS toolkit is available for download and installation through the Python Package Index (PyPI). The software can be deployed using the Python import function following installation. Source code is also available for download on Zenodo: DOI 10.5281/zenodo.2533377. SUPPLEMENTARY INFORMATION: Supplemental Materials are available at PeerJ online.

5.
BMC Bioinformatics ; 20(1): 369, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262249

ABSTRACT

BACKGROUND: Single cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular processes. Single cell RNA-seq has a far larger fraction of missing data reported as zeros (dropouts) than traditional bulk RNA-seq, and unsupervised clustering combined with Principal Component Analysis (PCA) can be used to overcome this limitation. After clustering, however, one has to interpret the average expression of markers on each cluster to identify the corresponding cell types, and this is normally done by hand by an expert curator. RESULTS: We present a computational tool for processing single cell RNA-seq data that uses a voting algorithm to automatically identify cells based on approval votes received by known molecular markers. Using a stochastic procedure that accounts for imbalances in the number of known molecular signatures for different cell types, the method computes the statistical significance of the final approval score and automatically assigns a cell type to clusters without an expert curator. We demonstrate the utility of the tool in the analysis of eight samples of bone marrow from the Human Cell Atlas. The tool provides a systematic identification of cell types in bone marrow based on a list of markers of immune cell types, and incorporates a suite of visualization tools that can be overlaid on a t-SNE representation. The software is freely available as a Python package at https://github.com/sdomanskyi/DigitalCellSorter . CONCLUSIONS: This methodology assures that extensive marker to cell type matching information is taken into account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can be applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the marker to cell type matching information and apply the methodology to different cellular environments.


Subject(s)
Bone Marrow Cells/cytology , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Software , Algorithms , Bone Marrow Cells/metabolism , Cluster Analysis , Humans , Principal Component Analysis , Single-Cell Analysis
6.
Article in English | MEDLINE | ID: mdl-35574240

ABSTRACT

Associative memories in Hopfield's neural networks are mapped to gene expression pattern to model different paths of disease progression towards Multiple Myeloma (MM). The model is built using single cell RNA-seq data from bone marrow aspirates of MM patients as well as patients diagnosed with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM), two medical conditions that often progress to full MM. Results: We identify different clusters of MGUS, SMM, and MM cells, map them to Hopfield associative memory patterns, and model the dynamics of transition between the different patterns. The model is then used to identify genes that are differentialy expressed across different MM stages and whose simultaneous inhibition is associated to a delayed disease progression.

7.
PLoS Comput Biol ; 13(11): e1005849, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29149186

ABSTRACT

Modern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield model, a recurrent neural network based on spin glasses, to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties of these cyclic Hopfield systems, including the ability of populations of simulated cells to recreate experimental expression data and the effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes which, when selectively inhibited by local external fields representing gene silencing compounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four kinases AURKB, NEK1, TTK, and WEE1 causes simulated HeLa cells to accumulate in the M phase. Finally, we suggest possible improvements and extensions to our model.


Subject(s)
Cell Cycle/genetics , Computational Biology/methods , Models, Genetic , Neural Networks, Computer , Transcriptome/genetics , Algorithms , Gene Expression Profiling , Gene Silencing , HeLa Cells , Humans , Saccharomyces cerevisiae/genetics
8.
Biochem Pharmacol ; 138: 140-149, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28522407

ABSTRACT

Pancreatic ß-cell lipotoxicity is a central feature of the pathogenesis of type 2 diabetes. To study the mechanism by which fatty acids cause ß-cell death and develop novel approaches to prevent it, a high-throughput screen on the ß-cell line INS1 was carried out. The cells were exposed to palmitate to induce cell death and compounds that reversed palmitate-induced cytotoxicity were ascertained. Hits from the screen were analyzed by an increasingly more stringent testing funnel, ending with studies on primary human islets treated with palmitate. MAP4K4 inhibitors, which were not part of the screening libraries but were ascertained by a bioinformatics analysis, and the endocannabinoid anandamide were effective at inhibiting palmitate-induced apoptosis in INS1 cells as well as primary rat and human islets. These targets could serve as the starting point for the development of therapeutics for type 2 diabetes.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases , Computational Biology , Fatty Acids, Nonesterified/adverse effects , Fatty Acids, Nonesterified/antagonists & inhibitors , Female , High-Throughput Screening Assays , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries , Tissue Culture Techniques
9.
PLoS Comput Biol ; 12(6): e1005009, 2016 06.
Article in English | MEDLINE | ID: mdl-27359334

ABSTRACT

The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.


Subject(s)
Evolution, Molecular , Gene Regulatory Networks/genetics , Leukemia, Myeloid, Acute/genetics , Models, Genetic , Computational Biology , Humans
10.
PLoS One ; 10(6): e0126718, 2015.
Article in English | MEDLINE | ID: mdl-26042811

ABSTRACT

Cell-based therapies to treat skeletal muscle disease are limited by the poor survival of donor myoblasts, due in part to acute hypoxic stress. After confirming that the microenvironment of transplanted myoblasts is hypoxic, we screened a kinase inhibitor library in vitro and identified five kinase inhibitors that protected myoblasts from cell death or growth arrest in hypoxic conditions. A systematic, combinatorial study of these compounds further improved myoblast viability, showing both synergistic and additive effects. Pathway and target analysis revealed CDK5, CDK2, CDC2, WEE1, and GSK3ß as the main target kinases. In particular, CDK5 was the center of the target kinase network. Using our recently developed statistical method based on elastic net regression we computationally validated the key role of CDK5 in cell protection against hypoxia. This method provided a list of potential kinase targets with a quantitative measure of their optimal amount of relative inhibition. A modified version of the method was also able to predict the effect of combinations using single-drug response data. This work is the first step towards a broadly applicable system-level strategy for the pharmacology of hypoxic damage.


Subject(s)
Cell Cycle Checkpoints/drug effects , Myoblasts, Skeletal/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Animals , Cell Death/drug effects , Cell Hypoxia/drug effects , Cells, Cultured , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Myoblasts, Skeletal/pathology
11.
J Comput Biol ; 22(4): 266-88, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25844667

ABSTRACT

A key aim of systems biology is the reconstruction of molecular networks. We do not yet, however, have networks that integrate information from all datasets available for a particular clinical condition. This is in part due to the limited scalability, in terms of required computational time and power, of existing algorithms. Network reconstruction methods should also be scalable in the sense of allowing scientists from different backgrounds to efficiently integrate additional data. We present a network model of acute myeloid leukemia (AML). In the current version (AML 2.1), we have used gene expression data (both microarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and a protein-protein interactions dataset. Our scalable network reconstruction method is in part based on the well-known property of gene expression correlation among interacting molecules. The difficulty of distinguishing between direct and indirect interactions is addressed by optimizing the coefficient of variation of gene expression, using a validated gold-standard dataset of direct interactions. Computational time is much reduced compared to other network reconstruction methods. A key feature is the study of the reproducibility of interactions found in independent clinical datasets. An analysis of the most significant clusters, and of the network properties (intraset efficiency, degree, betweenness centrality, and PageRank) of common AML mutations demonstrated the biological significance of the network. A statistical analysis of the response of blast cells from 11 AML patients to a library of kinase inhibitors provided an experimental validation of the network. A combination of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and other kinases as potential therapeutic targets in AML.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute/genetics , Protein Interaction Maps , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic , Gene Ontology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results , Transcriptome
12.
PLoS One ; 9(8): e105842, 2014.
Article in English | MEDLINE | ID: mdl-25170874

ABSTRACT

The asymmetric Hopfield model is used to simulate signaling dynamics in gene regulatory networks. The model allows for a direct mapping of a gene expression pattern into attractor states. We analyze different control strategies aimed at disrupting attractor patterns using selective local fields representing therapeutic interventions. The control strategies are based on the identification of signaling bottlenecks, which are single nodes or strongly connected clusters of nodes that have a large impact on the signaling. We provide a theorem with bounds on the minimum number of nodes that guarantee control of bottlenecks consisting of strongly connected components. The control strategies are applied to the identification of sets of proteins that, when inhibited, selectively disrupt the signaling of cancer cells while preserving the signaling of normal cells. We use an experimentally validated non-specific and an algorithmically-assembled specific B cell gene regulatory network reconstructed from gene expression data to model cancer signaling in lung and B cells, respectively. Among the potential targets identified here are TP53, FOXM1, BCL6 and SRC. This model could help in the rational design of novel robust therapeutic interventions based on our increasing knowledge of complex gene signaling networks.


Subject(s)
Algorithms , Gene Regulatory Networks/genetics , Models, Genetic , Neoplasms/genetics , Neural Networks, Computer , Cell Communication/genetics , Cell Line , Cell Line, Tumor , Computer Simulation , Gene Expression Regulation, Neoplastic , Humans , Kinetics , Signal Transduction/genetics
13.
PLoS One ; 9(7): e102221, 2014.
Article in English | MEDLINE | ID: mdl-25029499

ABSTRACT

The BCR-ABL translocation is found in chronic myeloid leukemia (CML) and in Ph+ acute lymphoblastic leukemia (ALL) patients. Although imatinib and its analogues have been used as front-line therapy to target this mutation and control the disease for over a decade, resistance to the therapy is still observed and most patients are not cured but need to continue the therapy indefinitely. It is therefore of great importance to find new therapies, possibly as drug combinations, which can overcome drug resistance. In this study, we identified eleven candidate anti-leukemic drugs that might be combined with imatinib, using three approaches: a kinase inhibitor library screen, a gene expression correlation analysis, and literature analysis. We then used an experimental search algorithm to efficiently explore the large space of possible drug and dose combinations and identified drug combinations that selectively kill a BCR-ABL+ leukemic cell line (K562) over a normal fibroblast cell line (IMR-90). Only six iterations of the algorithm were needed to identify very selective drug combinations. The efficacy of the top forty-nine combinations was further confirmed using Ph+ and Ph- ALL patient cells, including imatinib-resistant cells. Collectively, the drug combinations and methods we describe might be a first step towards more effective interventions for leukemia patients, especially those with the BCR-ABL translocation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzamides/administration & dosage , Benzamides/pharmacology , Drug Discovery , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Piperazines/administration & dosage , Piperazines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Algorithms , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Piperazines/therapeutic use , Pyrimidines/therapeutic use
14.
BMC Syst Biol ; 8: 74, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24961498

ABSTRACT

BACKGROUND: Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex biological processes downstream of the targeted kinases. RESULTS: We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given cell line. We compared different versions of the method, which is based on a regression technique known as elastic net. Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic intervention in this cell line. CONCLUSIONS: We have proposed an integrated experimental and computational methodology, called KIEN, that identifies the role of specific kinases in the drug response of a given cell line. The method will facilitate the design of new kinase inhibitors and the development of therapeutic interventions with combinations of many inhibitors.


Subject(s)
Computational Biology/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Linear Models , Nonlinear Dynamics , Signal Transduction/drug effects
15.
Nat Commun ; 5: 3672, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24739485

ABSTRACT

Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here, we identify small-molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons.


Subject(s)
Glutamic Acid/toxicity , Phosphatidylinositol 3-Kinases/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Apoptosis/drug effects , Cell Line , Class I Phosphatidylinositol 3-Kinases , Enzyme Inhibitors/pharmacology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Phosphoinositide-3 Kinase Inhibitors , Reactive Oxygen Species/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
16.
PLoS One ; 8(12): e82859, 2013.
Article in English | MEDLINE | ID: mdl-24349380

ABSTRACT

The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on the protein components, and relatively little is known of how the microenvironmental metabolome might influence tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM) and peripheral blood (PB) samples from 10 children with acute lymphoblastic leukemia (ALL). BM and PB samples from the same patient were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites involved in lipid metabolism (p<0.006). In contrast, the strongest correlations in the BM upon remission were observed among amino acid metabolites and derivatives (p<9.2 × 10(-10)). This study provides evidence that metabolic characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.


Subject(s)
Metabolome , Metabolomics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Microenvironment , Adolescent , Bone Marrow/metabolism , Bone Marrow/pathology , Child , Child, Preschool , Humans , Induction Chemotherapy , Infant , Metabolic Networks and Pathways/drug effects , Metabolomics/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
17.
PLoS One ; 7(1): e29374, 2012.
Article in English | MEDLINE | ID: mdl-22235289

ABSTRACT

Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer) networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and protein kinases controlling protein substrates) and a drug-target network composed of kinase inhibitors and of their kinase targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ∼8% of targets and the density of links is 2.5%±1.2%. Links per node are predominantly exponentially distributed. We explain the conservation of the mean number of incoming links per target using a mathematical model of control networks, which also indicates that the "many-to-many" structure of biological control has properties of efficient robustness. The drug-target network has many statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can be obtained. These findings suggest a completely new approach to pharmacological control of biological systems. Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being designed with biomimetic properties, such as "many-to-many" targeting, very wide coverage of the target set, and redundancy of incoming links per target.


Subject(s)
Biometry/methods , Biomimetics , Drug Design , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
18.
Nat Commun ; 2: 545, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22109519

ABSTRACT

Metabolism is altered in many highly prevalent diseases and is controlled by a complex network of intracellular regulators. Monitoring cell metabolism during treatment is extremely valuable to investigate cellular response and treatment efficacy. Here we describe a nuclear magnetic resonance-based method for screening of the metabolomic response of drug-treated mammalian cells in a 96-well format. We validate the method using drugs having well-characterized targets and report the results of a screen of a kinase inhibitor library. Four hits are validated from their action on an important clinical parameter, the lactate to pyruvate ratio. An eEF-2 kinase inhibitor and an NF-kB activation inhibitor increased lactate/pyruvate ratio, whereas an MK2 inhibitor and an inhibitor of PKA, PKC and PKG induced a decrease. The method is validated in cell lines and in primary cancer cells, and may have potential applications in both drug development and personalized therapy.


Subject(s)
Drug Evaluation, Preclinical/methods , Magnetic Resonance Spectroscopy/methods , Protein Kinase Inhibitors/analysis , Cell Line , Humans
19.
Article in English | MEDLINE | ID: mdl-20836021

ABSTRACT

Effective therapy of complex diseases requires control of highly nonlinear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of cellular network activity. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper, we describe the main current and proposed approaches to the design of combinatorial therapies, including the heuristic methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.


Subject(s)
Algorithms , Combined Modality Therapy , Systems Biology/methods , Animals , Artificial Intelligence , Humans
20.
BMC Syst Biol ; 3: 91, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19740440

ABSTRACT

BACKGROUND: Cellular hypoxia is a component of many diseases, but mechanisms of global hypoxic adaptation and resistance are not completely understood. Previously, a population of Drosophila flies was experimentally selected over several generations to survive a chronically hypoxic environment. NMR-based metabolomics, combined with flux-balance simulations of genome-scale metabolic networks, can generate specific hypotheses for global reaction fluxes within the cell. We applied these techniques to compare metabolic activity during acute hypoxia in muscle tissue of adapted versus "naïve" control flies. RESULTS: Metabolic profiles were gathered for adapted and control flies after exposure to acute hypoxia using 1H NMR spectroscopy. Principal Component Analysis suggested that the adapted flies are tuned to survive a specific oxygen level. Adapted flies better tolerate acute hypoxic stress, and we explored the mechanisms of this tolerance using a flux-balance model of central metabolism. In the model, adapted flies produced more ATP per glucose and created fewer protons than control flies, had lower pyruvate carboxylase flux, and had greater usage of Complex I over Complex II. CONCLUSION: We suggest a network-level hypothesis of metabolic regulation in hypoxia-adapted flies, in which lower baseline rates of biosynthesis in adapted flies draws less anaplerotic flux, resulting in lower rates of glycolysis, less acidosis, and more efficient use of substrate during acute hypoxic stress. In addition we suggest new specific hypothesis, which were found to be consistent with existing data.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Energy Transfer , Hypoxia/physiopathology , Metabolome , Models, Biological , Oxygen/metabolism , Adaptation, Physiological , Animals , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...