Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(12)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545948

ABSTRACT

The photochemical dynamics of the acetic acid and trifluoro-acetic acid dimers in hexane are studied using time-resolved infrared absorption spectroscopy and ab initio electronic structure calculations. The different hydrogen bond strengths of the two systems lead to changes in the character of the accessed excited states and in the timescales of the initial structural rearrangement that define the early time dynamics following UV excitation. The much stronger hydrogen bonding in the acetic acid dimer stabilizes the system against dissociation. Ground state recovery is mediated by a structural buckling around the hydrogen bond itself with no evidence for excited state proton transfer processes that are usually considered to drive ultrafast relaxation processes in hydrogen bonded systems. The buckling of the ring leads to relaxation through two conical intersections and the eventual reformation of the electronic and vibrational ground states on a few picosecond timescale. In trifluoro-acetic acid, the weaker hydrogen bonding interaction means that the dimer dissociates under similar irradiation conditions. The surrounding solvent cage restricts the full separation of the monomer components, meaning that the dimer is reformed and returns to the ground state structure via a similar buckled structure but over a much longer, ∼100 ps, timescale.

2.
Bull Environ Contam Toxicol ; 110(2): 46, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36690874

ABSTRACT

We attempted to characterize zooplankton community response following spills of the unconventional crude oil, diluted bitumen (dilbit), into 10-m diameter, ~ 100 m3, ~ 1.5-m deep boreal lake limnocorrals, including two controls and seven dilbit treatments ranging from 1.5 to 180 L (1:100,000 to 1:1,000 v/v, dilbit:water). Community composition and abundances were monitored weekly to bi-weekly over three months. Total zooplankton biomass and abundance seemingly collapsed in all limnocorrals, regardless of treatment, though some rotifer species persisted. As a result, it was not possible to determine the impacts of dilbit. We theorize several potential non-oil-related reasons for the sudden community collapse - including elevated zinc levels, fish grazing pressures, and sampling biases - and provide guidance for future work using in-lake enclosures.


Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Lakes , Zooplankton , Water Pollutants, Chemical/analysis , Hydrocarbons
3.
Sci Rep ; 7: 46708, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28447615

ABSTRACT

Life originated in Archaean oceans, almost 4 billion years ago, in the absence of oxygen and the presence of high dissolved iron concentrations. Early Earth oxidation is marked globally by extensive banded iron formations but the contributing processes and timing remain controversial. Very few aquatic habitats have been discovered that match key physico-chemical parameters of the early Archaean Ocean. All previous whole ecosystem Archaean analogue studies have been confined to rare, low sulfur, and permanently stratified lakes. Here we provide first evidence that millions of Boreal Shield lakes with natural anoxia offer the opportunity to constrain biogeochemical and microbiological aspects of early Archaean life. Specifically, we combined novel isotopic signatures and nucleic acid sequence data to examine processes in the anoxic zone of stratified boreal lakes that are naturally low in sulfur and rich in ferrous iron, hallmark characteristics predicted for the Archaean Ocean. Anoxygenic photosynthesis was prominent in total water column biogeochemistry, marked by distinctive patterns in natural abundance isotopes of carbon, nitrogen, and iron. These processes are robust, returning reproducibly after water column re-oxygenation following lake turnover. Evidence of coupled iron oxidation, iron reduction, and methane oxidation affect current paradigms of both early Earth and modern aquatic ecosystems.


Subject(s)
Aquatic Organisms/microbiology , Ecosystem , Geologic Sediments/microbiology , Lakes/microbiology , Aquatic Organisms/chemistry , Biological Evolution , Geologic Sediments/chemistry , Iron/analysis , Lakes/chemistry , Marine Biology , Methane/analysis , Nitrogen/analysis , Oceans and Seas , Oxidation-Reduction , Oxygen/analysis , Photosynthesis , Sulfur/analysis
4.
J Chem Theory Comput ; 11(9): 4189-96, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26575914

ABSTRACT

We review a range of multireference diagnostics for quantum chemistry and discuss them in terms of choices of the molecular orbitals. We show how an approach1 of P.-O. Löwdin can also be viewed as quantifying the electron correlation via the spatial entanglement relative to a single determinant. We consider three example systems from quantum chemistry that exhibit three different combinations of multireference character and correlation: not strongly multireference and not strongly correlated, strongly multireference but not strongly correlated, and strongly multireference together with strong correlation. We find that a multireference measure (MR) does not change substantially with the cutoff used for a Monte Carlo configuration interaction calculation and investigate the effect of using natural orbitals. We see that a coupled-cluster singles and doubles diagnostic and a density-functional theory diagnostic give a correct general prediction of the multireference character for these systems. We also look at the issue of multireference character for a collection of noninteracting hydrogen molecules and the effect of basis size on the multireference character of a stretched hydrogen molecule.

5.
Phys Rev Lett ; 114(23): 233001, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196796

ABSTRACT

The ability to probe energy flow in molecules, following the absorption of ultraviolet light, is crucial to unraveling photophysical phenomena. Here we excite a coherent superposition of vibrational states in the first excited electronic state (S1) in catechol, resulting in a vibrational wave packet. The observed quantum beats, assigned to superpositions of the low-frequency, and strongly mixed, O-H torsional mode τ2, elegantly demonstrate how changes in geometry upon photoionization from the S1 state to the ground state of the cation (D0) enables one to probe energy flow at the very early stages of photoexcitation in this biological chromophore.

6.
J Chem Phys ; 141(12): 124118, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25273423

ABSTRACT

We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4 molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.

7.
J Chem Phys ; 139(15): 154103, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24160496

ABSTRACT

We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H3, including a crossing with the ground state, can be accurately reproduced using a small fraction of the full configuration interaction (FCI) space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys. 137, 204108 (2012)] is also shown to be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH2 found by Yarkony [J. Chem. Phys. 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the 2 (1)A1 state of carbon monoxide. We then look at vertical excitations for small organic molecules up to the size of butadiene where the SA-MCCI energies and oscillator strengths are compared with CASPT2 values [M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008)]. We finally see if the SA-MCCI results for these excitation energies can be improved by using MCCIPT2 with approximate natural orbitals when the PT2 space is not onerously large.

8.
J Chem Phys ; 137(20): 204108, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23205982

ABSTRACT

Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from Møller-Plesset perturbation theory and quadratic configuration interaction with single and double substitutions in MCCI calculations of single-point energies. The efficiency and accuracy of approximate natural orbitals in MCCI potential curve calculations for the double hydrogen dissociation of water, the dissociation of carbon monoxide, and the dissociation of the nitrogen molecule are then considered in comparison with standard MCCI when using full configuration interaction as a benchmark. We also use the method to produce a potential curve for water in an aug-cc-pVTZ basis. A new way to quantify the accuracy of a potential curve is put forward that takes into account all of the points and that the curve can be shifted by a constant. We adapt a second-order perturbation scheme to work with MCCI (MCCIPT2) and improve the efficiency of the removal of duplicate states in the method. MCCIPT2 is tested in the calculation of a potential curve for the dissociation of nitrogen using both Slater determinants and configuration state functions.

9.
Proc Natl Acad Sci U S A ; 105(32): 11254-8, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18667696

ABSTRACT

Lake 227, a small lake in the Precambrian Shield at the Experimental Lakes Area (ELA), has been fertilized for 37 years with constant annual inputs of phosphorus and decreasing inputs of nitrogen to test the theory that controlling nitrogen inputs can control eutrophication. For the final 16 years (1990-2005), the lake was fertilized with phosphorus alone. Reducing nitrogen inputs increasingly favored nitrogen-fixing cyanobacteria as a response by the phytoplankton community to extreme seasonal nitrogen limitation. Nitrogen fixation was sufficient to allow biomass to continue to be produced in proportion to phosphorus, and the lake remained highly eutrophic, despite showing indications of extreme nitrogen limitation seasonally. To reduce eutrophication, the focus of management must be on decreasing inputs of phosphorus.


Subject(s)
Biomass , Cyanobacteria/growth & development , Eutrophication/physiology , Fresh Water/microbiology , Nitrogen Fixation/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Phytoplankton/growth & development , Phytoplankton/microbiology , Seasons , Time Factors
10.
EMBO J ; 20(13): 3322-32, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11432820

ABSTRACT

The substrate specificities of Trypanosoma brucei and human (HeLa) GlcNAc-PI de-N-acetylases were determined using 24 substrate analogues. The results show the following. (i) The de-N-acetylases show little specificity for the lipid moiety of GlcNAc-PI. (ii) The 3'-OH group of the GlcNAc residue is essential for substrate recognition whereas the 6'-OH group is dispensable and the 4'-OH, while not required for recognition, cannot be epimerized or substituted. (iii) The parasite enzyme can act on analogues containing betaGlcNAc or aromatic N-acyl groups, whereas the human enzyme cannot. (iv) Three GlcNR-PI analogues are de-N-acetylase inhibitors, one of which is a suicide inhibitor. (v) The suicide inhibitor most likely forms a carbamate or thiocarbamate ester to an active site hydroxy-amino acid or Cys or residue such that inhibition is reversed by certain nucleophiles. These and previous results were used to design two potent (IC50 = 8 nM) parasite-specific suicide substrate inhibitors. These are potential lead compounds for the development of anti-protozoan parasite drugs.


Subject(s)
Amidohydrolases/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycosylphosphatidylinositols/biosynthesis , Trypanosoma brucei brucei/enzymology , Acetates/metabolism , Acetylation , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Amidohydrolases/antagonists & inhibitors , Animals , Drug Design , Enzyme Inhibitors/chemistry , HeLa Cells , Humans , Kinetics , Molecular Conformation , Structure-Activity Relationship , Substrate Specificity
11.
Biochemistry ; 39(38): 11801-7, 2000 Sep 26.
Article in English | MEDLINE | ID: mdl-10995248

ABSTRACT

The natural substrate for the first alpha-D-mannosyltransferase of glycosylphosphatidylinositol biosynthesis in the protozoan parasite Trypanosoma brucei is D-GlcNalpha1-6-D-myo-inositol-1-P-sn-1, 2-diacylglycerol. Here we show that a diastereoisomer, D-GlcNalpha1-6-L-myo-inositol-1-P-sn-1,2-diacylglycerol, is an inhibitor of this enzyme in a trypanosomal cell-free system. Tests with other L-myo-inositol-containing compounds revealed that L-myo-inositol-1-phosphate is the principal inhibitory component and that methylation of the 2-OH group of the L-myo-inositol residue abolishes any inhibition. Comparisons between the natural substrate and the inhibitors suggested that the inhibitors bind to the first alpha-D-mannosyltransferase by means of charge interactions with the 1-phosphate group and/or hydrogen bonds involving the 3-, 4-, and 5-OH groups of the L-myo-inositol residue, which are predicted to occupy orientations identical to those of the 1-phosphate and 5-, 4-, and 3-OH groups, respectively, of the D-myo-inositol residue of the natural substrate. However, additional experiments indicated that the 4-OH group of the D-myo-inositol residue is unlikely to be involved in substrate recognition. None of the L-myo-inositol-containing compounds that inhibited glycosylphosphatidylinositol (GPI) biosynthesis in a parasite cell-free system had any effect on GPI biosynthesis in a comparable human (HeLa) cell-free system, suggesting that other related parasite-specific inhibitors of this essential pathway might be developed.


Subject(s)
Glycosylphosphatidylinositols/antagonists & inhibitors , Glycosylphosphatidylinositols/biosynthesis , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/enzymology , Animals , Cell-Free System/enzymology , Cell-Free System/parasitology , Enzyme Inhibitors/chemistry , Glycolipids/chemistry , HeLa Cells , Humans , Inositol/analogs & derivatives , Inositol/chemistry , Mannosyltransferases/antagonists & inhibitors , Mannosyltransferases/metabolism , Stereoisomerism , Substrate Specificity , Trypanosoma brucei brucei/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...