Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 33(1): 12-32, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37712894

ABSTRACT

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.


Subject(s)
Proteome , Rett Syndrome , Animals , Female , Humans , Male , Mice , Brain/metabolism , Disease Models, Animal , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proteome/genetics , Proteome/metabolism , Rett Syndrome/genetics , Rett Syndrome/metabolism
2.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37066332

ABSTRACT

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.

3.
iScience ; 25(9): 104920, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36060058

ABSTRACT

The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.

4.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33174596

ABSTRACT

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Subject(s)
Databases, Protein , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Sequence Annotation , Proteome/metabolism , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Datasets as Topic , Humans , Internet , Machine Learning , Mass Spectrometry , Mice , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/classification , Mitochondrial Proteins/genetics , Proteome/classification , Proteome/genetics , Software
5.
Nature ; 583(7814): 122-126, 2020 07.
Article in English | MEDLINE | ID: mdl-32461692

ABSTRACT

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Subject(s)
Liver/metabolism , NAD/metabolism , Stress, Physiological , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytosol/metabolism , Disease Models, Animal , Fibroblast Growth Factors/blood , Genetic Variation , Glucose Tolerance Test , Humans , Insulin Resistance , Levilactobacillus brevis/enzymology , Levilactobacillus brevis/genetics , Male , Mice , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Triglycerides/blood
6.
Nat Biotechnol ; 38(3): 309-313, 2020 03.
Article in English | MEDLINE | ID: mdl-31932725

ABSTRACT

An elevated intracellular NADH:NAD+ ratio, or 'reductive stress', has been associated with multiple diseases, including disorders of the mitochondrial electron transport chain. As the intracellular NADH:NAD+ ratio can be in near equilibrium with the circulating lactate:pyruvate ratio, we hypothesized that reductive stress could be alleviated by oxidizing extracellular lactate to pyruvate. We engineered LOXCAT, a fusion of bacterial lactate oxidase (LOX) and catalase (CAT), which irreversibly converts lactate and oxygen to pyruvate and water. Addition of purified LOXCAT to the medium of cultured human cells with a defective electron transport chain decreased the extracellular lactate:pyruvate ratio, normalized the intracellular NADH:NAD+ ratio, upregulated glycolytic ATP production and restored cellular proliferation. In mice, tail-vein-injected LOXCAT lowered the circulating lactate:pyruvate ratio, blunted a metformin-induced rise in blood lactate:pyruvate ratio and improved NADH:NAD+ balance in the heart and brain. Our study lays the groundwork for a class of injectable therapeutic enzymes that alleviates intracellular redox imbalances by directly targeting circulating redox-coupled metabolites.


Subject(s)
Bacteria/enzymology , Catalase/metabolism , Lactic Acid/blood , Mixed Function Oxygenases/metabolism , Protein Engineering/methods , Bacterial Proteins/metabolism , HeLa Cells , Humans , K562 Cells , NAD/metabolism , Pyruvic Acid/metabolism , Recombinant Fusion Proteins/metabolism
7.
Cell ; 167(2): 512-524.e14, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27667686

ABSTRACT

All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Ribosome Subunits, Large, Eukaryotic/drug effects , Ribosome Subunits, Large, Eukaryotic/metabolism , Schizosaccharomyces pombe Proteins/antagonists & inhibitors , Triazines/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Indoles/chemistry , Indoles/isolation & purification , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Structure-Activity Relationship , Triazines/chemistry , Triazines/isolation & purification
8.
J Am Chem Soc ; 134(28): 11495-502, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22715982

ABSTRACT

Oligomers composed of ß(3)-amino acid residues and a mixture of α- and ß(3)-residues have emerged as proteolytically stable structural mimics of α-helices. An attractive feature of these oligomers is that they adopt defined conformations in short sequences. In this manuscript, we evaluate the impact of ß(3)-residues as compared to their α-amino acid analogs in prenucleated helices. Our hydrogen-deuterium exchange results suggest that heterogeneous sequences composed of "αααß" repeats are conformationally more rigid than the corresponding homogeneous α-peptide helices, with the macrocycle templating the helical conformation having a significant influence.


Subject(s)
Peptides/chemistry , Circular Dichroism , Deuterium/chemistry , Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Protein Folding
9.
Nat Chem Biol ; 7(9): 585-7, 2011 Jul 17.
Article in English | MEDLINE | ID: mdl-21765406

ABSTRACT

Mimics of α-helices on protein surfaces have emerged as powerful reagents for antagonizing protein-protein interactions, which are difficult to target with small molecules. Here we describe the design of a cell-permeable synthetic α-helix, based on the guanine nucleotide exchange factor Sos, that interferes with Ras-Sos interaction and downregulates Ras signaling in response to receptor tyrosine kinase activation.


Subject(s)
Biomimetic Materials/chemistry , Drug Design , Oligopeptides/chemistry , Son of Sevenless Protein, Drosophila/antagonists & inhibitors , ras Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Amino Acid Sequence , Biomimetic Materials/chemical synthesis , Biomimetic Materials/pharmacology , Biomimetics , Cell Line , Down-Regulation , Humans , Molecular Sequence Data , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Signal Transduction/drug effects , Son of Sevenless Protein, Drosophila/chemistry , ras Guanine Nucleotide Exchange Factors/chemistry
10.
Nat Protoc ; 5(11): 1857-65, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21030960

ABSTRACT

Stabilized α-helices and nonpeptidic helix mimetics have emerged as powerful molecular scaffolds for the discovery of protein-protein interaction inhibitors. Protein-protein interactions often involve large contact areas, which are often difficult for small molecules to target with high specificity. The hypothesis behind the design of stabilized helices and helix mimetics is that these medium-sized molecules may pursue their targets with higher specificity because of a larger number of contacts. This protocol describes an optimized synthetic strategy for the preparation of stabilized α-helices that feature a carbon-carbon linkage in place of the characteristic N-terminal main-chain hydrogen bond of canonical helices. Formation of the carbon-carbon bond is enabled by a microwave-assisted ring-closing metathesis reaction between two terminal olefins on the peptide chain. The outlined strategy allows the synthesis and purification of a hydrogen bond surrogate (HBS) α-helix in ∼ 1 week.


Subject(s)
Biomimetics , Peptides/chemical synthesis , Protein Structure, Secondary , Hydrogen Bonding , Peptides/chemistry , Proteins/chemistry
11.
Org Biomol Chem ; 8(8): 1773-6, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20449477

ABSTRACT

Solid phase synthesis of HBS helices involving the Fukuyama-Mitsunobu reaction and triphosgene coupling is described.


Subject(s)
Amides/chemistry , Proteins/chemical synthesis , Amides/chemical synthesis , Hydrogen Bonding , Protein Structure, Secondary , Proteins/chemistry
12.
Acc Chem Res ; 41(10): 1289-300, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18630933

ABSTRACT

Alpha-helices constitute the largest class of protein secondary structures and play a major role in mediating protein-protein interactions. Development of stable mimics of short alpha-helices would be invaluable for inhibition of protein-protein interactions. This Account describes our efforts in developing a general approach for constraining short peptides in alpha-helical conformations by a main-chain hydrogen bond surrogate (HBS) strategy. The HBS alpha-helices feature a carbon-carbon bond derived from a ring-closing metathesis reaction in place of an N-terminal intramolecular hydrogen bond between the peptide i and i + 4 residues. Our approach is centered on the helix-coil transition theory in peptides, which suggests that the energetically demanding organization of three consecutive amino acids into the helical orientation inherently limits the stability of short alpha-helices. The HBS method affords preorganized alpha-turns to overcome this intrinsic nucleation barrier and initiate helix formation. The HBS approach is an attractive strategy for generation of ligands for protein receptors because placement of the cross-link on the inside of the helix does not block solvent-exposed molecular recognition surfaces of the molecule. Our metathesis-based synthetic strategy utilizes standard Fmoc solid phase peptide synthesis methodology, resins, and reagents and provides HBS helices in sufficient amounts for subsequent biophysical and biological analyses. Extensive conformational analysis of HBS alpha-helices with 2D NMR, circular dichroism spectroscopies and X-ray crystallography confirms the alpha-helical structure in these compounds. The crystal structure indicates that all i and i + 4 C=O and NH hydrogen-bonding partners fall within distances and angles expected for a fully hydrogen-bonded alpha-helix. The backbone conformation of HBS alpha-helix in the crystal structure superimposes with an rms difference of 0.75 A onto the backbone conformation of a model alpha-helix. Significantly, the backbone torsion angles for the HBS helix residues fall within the range expected for a canonical alpha-helix. Thermal and chemical denaturation studies suggest that the HBS approach provides exceptionally stable alpha-helices from a variety of short sequences, which retain their helical conformation in aqueous buffers at exceptionally high temperatures. The high degree of thermal stability observed for HBS helices is consistent with the theoretical predictions for a nucleated helix. The HBS approach was devised to afford internally constrained helices so that the molecular recognition surface of the helix and its protein binding properties are not compromised by the constraining moiety. Notably, our preliminary studies illustrate that HBS helices can target their expected protein receptors with high affinity.


Subject(s)
Peptides/chemistry , Alkenes/chemistry , Amides/chemistry , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Protons , Temperature
13.
Biochemistry ; 47(14): 4189-95, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18335996

ABSTRACT

We report the design, synthesis, and characterization of a short peptide trapped in a pi-helix configuration. This high-energy conformation was nucleated by a preorganized pi-turn, which was obtained by replacing an N-terminal intramolecular main chain i and i + 5 hydrogen bond with a carbon-carbon bond. Our studies highlight the nucleation parameter as a key factor contributing to the relative instability of the pi-helix and allow us to estimate fundamental helix-coil transition parameters for this conformation.


Subject(s)
Peptides/chemistry , Protein Folding , Amino Acid Sequence , Circular Dichroism , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemical synthesis , Peptides/metabolism , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...