Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 19(5): 367-382, 2024 02.
Article in English | MEDLINE | ID: mdl-38305304

ABSTRACT

Aim: The present research focused on development and optimization of ligand decorated theranostic nanocarrier encapsulating paclitaxel and carbon quantum dots (CQDs). Methods: CQDs were prepared by microwave-assisted pyrolysis and were characterized for particle size and fluorescence behavior. Ligand decorated zein nanoparticles, coloaded with paclitaxel and CQDs, were formulated using a one-step nanoprecipitation method and optimized for various process parameters. Results: Particle size for coated and uncoated nanoparticles was 90.16 ± 1.65 and 179.26 ± 3.61 nm, respectively, and entrapment efficiency was >80%. The circular dichroism spectroscopy showed zein retained its secondary structure and release study showed biphasic release behavior. Conclusion: The prepared theranostic nanocarrier showed optimal fluorescence and desired release behavior without altering the secondary structure of zein.


Subject(s)
Nanoparticles , Quantum Dots , Zein , Quantum Dots/chemistry , Paclitaxel/chemistry , Zein/chemistry , Precision Medicine , Carbon/chemistry , Ligands , Nanoparticles/chemistry
2.
Stem Cells Int ; 2024: 9077926, 2024.
Article in English | MEDLINE | ID: mdl-38213742

ABSTRACT

Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.

3.
AAPS PharmSciTech ; 24(8): 226, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37945925

ABSTRACT

Amphotericin B (AmB) is a membrane-acting antibiotic used for the treatment of fungal and protozoal infections. AmB exists in various molecular forms, i.e., monomeric, super-aggregated, and oligomeric forms, where oligomeric forms are highly toxic because of their relative affinity toward cholesterol present over human cell membrane. Hence, the objective of our research work was to study the aggregation state of AmB in two different nanoformulations, i.e., solid lipid nanoparticles (SLNs) and zein-based nanoparticles (PNPs), with the aim of enhancing the fraction of less toxic form of AmB, and a comparative study was performed. The zein and glyceryl monostearate can intercalate the polyenic domain of AmB and thereby hinder the hydrophobic attractions between the AmB molecules, which allows their existence in monomeric forms. The particle size of AmB-SLNs and AmB-PNPs were 378.90 ± 9.50 nm and 184.90 ± 6.00 nm, while zeta potential was -34.97 ± 0.51 mV and +28.93 ± 2.29 mV, respectively. In vitro release studies showed more controlled release of AmB from PNPs (52.48 ± 1.07%) as compared to SLNs (86.33 ± 0.93%). The predominant aggregation state of AmB in both formulations was determined by UV-visible and circular dichroism spectrophotometry, where a higher degree of monomerization of AmB was reported in AmB-SLNs as compared to AmB-PNPs. Toxicity of the nanoformulations was evaluated through hemolysis test, where the results suggested that AmB-SLNs and AmB-PNPs were less hemolytic as compared to pure AmB. The nanoformulations demonstrated the predominant monomeric form of AmB, which may offer higher selectivity index toward microbial membrane.


Subject(s)
Nanoparticles , Zein , Humans , Amphotericin B/chemistry , Antifungal Agents/chemistry , Nanoparticles/chemistry , Polymers
4.
Curr Infect Dis Rep ; 24(11): 189-204, 2022.
Article in English | MEDLINE | ID: mdl-36187900

ABSTRACT

Purpose of Review: Japanese encephalitis (JE), a clinical indication of JE virus-induced brain inflammation, is the most prevalent cause of viral encephalitis in the world. This review gives a comprehensive update on the epidemiology, clinical features, therapeutic trials and approaches for preventing the spread of JE. It also outlines the different JE vaccines used in various countries and recommendations for administration of JE vaccines. Recent Findings: According to the WHO, annual incidence of JE is estimated to be approximately 68,000 cases worldwide. It is widespread across Asia-Pacific, with a potential for worldwide transmission. In endemic locations, JE is believed to affect children below 6 years of age, but in newly affected areas, both adults and children are at risk due to a lack of protective antibodies. Various vaccines have been developed for the prevention of JE and are being administered in endemic countries. Summary: JE is a neuroinvasive disease that causes symptoms ranging from simple fever to severe encephalitis and death. Despite a vast number of clinical trials on various drugs, there is still no complete cure available, and it can only be prevented by adequate vaccination. Various nanotechnological approaches for the prevention and treatment of JE are outlined in this review. Supplementary Information: The online version contains supplementary material available at 10.1007/s11908-022-00786-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...