Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 33(5): 539-49, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-23334327

ABSTRACT

Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.


Subject(s)
Aurora Kinase A/metabolism , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Azepines/pharmacology , Carcinoma, Ovarian Epithelial , Cell Adhesion , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement , Female , Humans , Mice , Mitosis/drug effects , Neoplasm Metastasis , Neoplasm Transplantation , Neoplasms, Glandular and Epithelial/enzymology , Ovarian Neoplasms/enzymology , Paclitaxel/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays , src-Family Kinases/metabolism
2.
Oncogene ; 31(10): 1217-27, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-21785464

ABSTRACT

Increased activity of SRC family kinases promotes tumor invasion and metastasis, and overexpression of the mitotic regulator Aurora kinase A (AURKA) drives tumor aneuploidy and chromosomal instability. These functions nominate SRC and AURKA as valuable therapeutic targets for cancer, and inhibitors for SRC and Aurora kinases are now being used in the clinic. In this study, we demonstrate potent synergy between multiple inhibitors of Aurora and SRC kinases in ovarian and colorectal cancer cell lines, but not in normal ovarian epithelial cell lines. Combination of Aurora and SRC inhibitors selectively killed cells that have undergone a preceding aberrant mitosis, and was associated with a postmitotic reattachment defect, and selective removal of aneuploid cell populations. Combined inhibition of Aurora kinase and SRC potentiated dasatinib-dependent loss of activated (Y(416)-phosphorylated) SRC. SRC and AURKA share a common interaction partner, NEDD9, which serves as a scaffolding protein with activities in cell attachment and mitotic control, suggesting SRC and AURKA might interact directly. In vitro, we observed physical interaction and mutual cross-phosphorylation between SRC and AURKA that enhanced SRC kinase activity. Together, these findings suggest that combination of SRC and Aurora-targeting inhibitors in the clinic may be a productive strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Aurora Kinase A , Aurora Kinases , Cell Adhesion/drug effects , Cell Line, Tumor , Dasatinib , Female , Humans , Mitosis/drug effects , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Thiazoles/pharmacology , src-Family Kinases/physiology
3.
J Virol ; 75(3): 1211-9, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11152494

ABSTRACT

The objective of this study was to identify the active form of the feline calicivirus (FCV) RNA-dependent RNA polymerase (RdRP). Multiple active forms of the FCV RdRP were identified. The most active enzyme was the full-length proteinase-polymerase (Pro-Pol) precursor protein, corresponding to amino acids 1072 to 1763 of the FCV polyprotein encoded by open reading frame 1 of the genome. Deletion of 163 amino acids from the amino terminus of Pro-Pol (the Val-1235 amino terminus) caused a threefold reduction in polymerase activity. Deletion of an additional one (the Thr-1236 amino terminus) or two (the Ala-1237 amino terminus) amino acids produced derivatives that were 7- and 175-fold, respectively, less active than Pro-Pol. FCV proteinase-dependent processing of Pro-Pol in the interdomain region preceding Val-1235 was not observed in the presence of a catalytically active proteinase; however, processing within the polymerase domain was observed. Inactivation of proteinase activity by changing the catalytic cysteine-1193 to glycine permitted the production and purification of intact Pro-Pol. Biochemical analysis of Pro-Pol showed that this enzyme has properties expected of a replicative polymerase, suggesting that Pro-Pol is an active form of the FCV RdRP.


Subject(s)
Calicivirus, Feline/enzymology , Endopeptidases/metabolism , Enzyme Precursors/metabolism , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Sequence , Base Sequence , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Enzyme Precursors/chemistry , Enzyme Precursors/isolation & purification , Manganese/pharmacology , Molecular Sequence Data , RNA, Viral/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...