Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37509974

ABSTRACT

In this paper, we design constant modulus waveforms for dual-function radar-communication (DFRC) systems based on a multi-input multi-output (MIMO) configuration of sensors for a far-field scenario. At first, we formulate a non-convex optimization problem subject to waveform synthesis for minimizing the interference power while maintaining a constant modulus constraint. Next, we solve this non-convex problem, iteratively, using the alternating direction method of multipliers (ADMM) algorithm. Importantly, the designed waveforms approximate a desired beampattern in terms of a high-gain radar beam and a slightly high gain communication beam while maintaining a desired low sidelobe level. The designed waveforms ensure an improved detection probability and an improved bit error rate (BER) for radar and communications parts, respectively. Finally, we demonstrate the effectiveness of the proposed method through simulation results.

2.
Sensors (Basel) ; 23(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37420607

ABSTRACT

In this paper, we present a hybrid frequency shift keying and frequency division multiplexing (i.e., FSK-FDM) approach for information embedding in dual-function radar and communication (DFRC) design to achieve an improved communication data rate. Since most of the existing works focus on merely two-bit transmission in each pulse repetition interval (PRI) using different amplitude modulation (AM)- and phased modulation (PM)-based techniques, this paper proposes a new technique that doubles the data rate by using a hybrid FSK-FDM technique. Note that the AM-based techniques are used when the communication receiver resides in the side lobe region of the radar. In contrast, the PM-based techniques perform better if the communication receiver is in the main lobe region. However, the proposed design facilitates the delivery of information bits to the communication receivers with an improved bit rate (BR) and bit error rate (BER) regardless of their locations in the radar's main lobe or side lobe regions. That is, the proposed scheme enables information encoding according to the transmitted waveforms and frequencies using FSK modulation. Next, the modulated symbols are added together to achieve a double data rate using the FDM technique. Finally, each transmitted composite symbol contains multiple FSK-modulated symbols, resulting in an increased data rate for the communication receiver. Numerous simulation results are presented to validate the effectiveness of the proposed technique.


Subject(s)
Communication , Radar , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...