Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(21): 11660-9, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-22985264

ABSTRACT

Limonene has a strong tendency to form secondary organic aerosol (SOA) in the atmosphere and in indoor environments. Initial oxidation occurs mainly via ozone or OH radical chemistry. We studied the effect of O(3) concentrations with or without a OH radical scavenger (2-butanol) on the SOA mass and thermal characteristics using the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures and a volatility tandem differential mobility analyzer. The SOA mass using 15 ppb limonene was strongly dependent on O(3) concentrations and the presence of a scavenger. The SOA volatility in the presence of a scavenger decreased with increasing levels of O(3), whereas without a scavenger, there was no significant change. A chemical kinetic model was developed to simulate the observations using vapor pressure estimates for compounds that potentially contributed to SOA. The model showed that the product distribution was affected by changes in both OH and ozone concentrations, which partly explained the observed changes in volatility, but was strongly dependent on accurate vapor pressure estimation methods. The model-experiment comparison indicated a need to consider organic peroxides as important SOA constituents. The experimental findings could be explained by secondary condensed-phase ozone chemistry, which competes with OH radicals for the oxidation of primary unsaturated products.


Subject(s)
Butanols/chemistry , Cyclohexenes/chemistry , Hydroxyl Radical/chemistry , Oxidants/chemistry , Ozone/chemistry , Terpenes/chemistry , Aerosols , Computer Simulation , Limonene , Models, Chemical , Temperature , Volatilization , Water/chemistry
2.
Environ Sci Technol ; 41(8): 2756-63, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17533835

ABSTRACT

The temperature-dependence of secondary organic aerosol (SOA) concentrations is measured using a temperature-controlled smog chamber. Aerosols are generated from reaction of alpha-pinene (14-150 ppb) and ozone at a constant temperature of 22 +/- 2 degrees C in the presence of the OH-scavenger 2-butanol. After the reactions are completed the chamber is heated or cooled in a range from 20 to 40 degrees C. SOA volume concentrations increase at temperatures below the initial formation temperature and decrease at elevated temperatures. The response to the temperature change as measured by percent mass change per degree ranged from -0.4 to -3.6% K(-1), for a total mass reduction of 5-60% upon heating from 22 to 35 degrees C. The reported range is due to two factors: (1) experimental uncertainty, arising mainly from uncertainty in evaporation and condensation behavior of particles lost to the chamber wall; (2) differences in the temperature response from experiment to experiment. Aerosol temperature sensitivity was also measured by tandem differential mobility analysis (TDMA) where similarly generated SOA were heated from 20 to 25 degrees C to 30-40 degrees C with residence times of 0.5-1.5 min, resulting in particle volume reductions of up to 20%. The TDMA experiments indicate that evaporation of the SOA particles in this system occurs with a potentially significant mass transfer limitation (e.g., accommodation coefficient <0.1).


Subject(s)
Aerosols , Monoterpenes/chemistry , Ozone/chemistry , Administration, Inhalation , Air Pollutants/chemistry , Bicyclic Monoterpenes , Butanols/chemistry , Temperature
3.
Environ Sci Technol ; 41(7): 2289-95, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17438777

ABSTRACT

Ammonium sulfate particles were generated by atomization and introduced into a smog chamber where they were coated with secondary organic aerosol from ozonolysis of limonene or alpha-pinene. These mixed particles were then sampled with a humidified Tandem-DMA system where a monodisperse aerosol population was selected, humidified, and dried to observe the relative humidity (RH) at which the particles returned to the original dry diameter. The volume fraction of secondary organic aerosol (SOA) in the mixed particles ranged from 0.59 to 0.94 for limonene SOA and 0.54 to 0.72 for alpha-pinene SOA. Efflorescence RHs for our mixed aerosols were in the range of 28-34%, similar to our observation of 32% ERH for pure ammonium sulfate nanoparticles. These findings indicate that the effect of SOA on the ERH of inorganic salts in the atmosphere may be negligible.


Subject(s)
Aerosols/chemistry , Ammonium Sulfate/chemistry , Atmosphere/chemistry , Phase Transition , Smog/analysis , Water/chemistry , Bicyclic Monoterpenes , Cyclohexenes , Humidity , Limonene , Monoterpenes , Regression Analysis , Terpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...