Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
J Med Econ ; 25(1): 755-761, 2022.
Article in English | MEDLINE | ID: mdl-35611840

ABSTRACT

AIM: Gaucher disease (GD) is a rare autosomal recessive condition. Type 1 GD (GD1) is the most prevalent form of GD in Western countries; enzyme replacement therapy (ERT) is a treatment option for patients with GD1. To understand the economic value of the GD1 ERT velaglucerase alfa, a budget impact model (BIM) was developed from a United States (US) payer perspective. METHODS: We estimated the budget impact of velaglucerase alfa for a 10-million-member US health plan by comparing the annual total costs of therapy between a scenario using current velaglucerase alfa uptake to a projected scenario with increased velaglucerase alfa uptake. Total drug costs for both scenarios were estimated as the sum of the product of the number of eligible patients on each treatment and the annual per-patient cost of each medication. Average per-patient costs for ERTs were calculated by adding the yearly drug acquisition, drug administration, and site-of-care markup costs. The budget impact was measured over years 1-3. RESULTS: An estimated 65 patients would receive velaglucerase alfa treatment in year 1, increasing to 90 patients by year 3. Across analyses, cost savings were realized with velaglucerase alfa compared with imiglucerase ($115,909) and taliglucerase alfa ($80,401). An annual total budget savings of $8.67 million could be realized for a hypothetical 10-million-member US health plan with increased velaglucerase alfa uptake. The per-member per-month costs decreased by $0.0241 across years 1-3. CONCLUSIONS: BIM results show that increased velaglucerase alfa uptake for GD1 treatment is cost-saving for US health plans.


Type 1 Gaucher disease (GD1) is a rare inherited condition. Long-term enzyme replacement therapy (ERT) can reverse and prevent complications. Imiglucerase, taliglucerase alfa, and velaglucerase alfa are 3 ERTs used to treat GD1. In this study, we estimated how increasing uptake of velaglucerase alfa vs. the other ERTs would impact the budget of a hypothetical US healthcare plan. The results show that increased uptake of velaglucerase alfa is cost-saving for US health plans.


Subject(s)
Gaucher Disease , Budgets , Cost Savings , Drug Costs , Enzyme Replacement Therapy/methods , Gaucher Disease/drug therapy , Humans , United States
3.
Sci Rep ; 11(1): 2323, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504880

ABSTRACT

G-proteins are implicated in plant productivity, but their genome-wide roles in regulating agronomically important traits remain uncharacterized. Transcriptomic analyses of rice G-protein alpha subunit mutant (rga1) revealed 2270 differentially expressed genes (DEGs) including those involved in C/N and lipid metabolism, cell wall, hormones and stress. Many DEGs were associated with root, leaf, culm, inflorescence, panicle, grain yield and heading date. The mutant performed better in total weight of filled grains, ratio of filled to unfilled grains and tillers per plant. Protein-protein interaction (PPI) network analysis using experimentally validated interactors revealed many RGA1-responsive genes involved in tiller development. qPCR validated the differential expression of genes involved in strigolactone-mediated tiller formation and grain development. Further, the mutant growth and biomass were unaffected by submergence indicating its role in submergence response. Transcription factor network analysis revealed the importance of RGA1 in nitrogen signaling with DEGs such as Nin-like, WRKY, NAC, bHLH families, nitrite reductase, glutamine synthetase, OsCIPK23 and urea transporter. Sub-clustering of DEGs-associated PPI network revealed that RGA1 regulates metabolism, stress and gene regulation among others. Predicted rice G-protein networks mapped DEGs and revealed potential effectors. Thus, this study expands the roles of RGA1 to agronomically important traits and reveals their underlying processes.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrogen/metabolism , Oryza/genetics , Plant Proteins/genetics , Sequence Analysis, RNA/methods , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Sci Rep ; 10(1): 12228, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699267

ABSTRACT

Nitrate (N) response is modulated by light, but not understood from a genome-wide perspective. Comparative transcriptomic analyses of nitrate response in light-grown and etiolated rice leaves revealed 303 and 249 differentially expressed genes (DEGs) respectively. A majority of them were exclusive to light (270) or dark (216) condition, whereas 33 DEGs were common. The latter may constitute response to N signaling regardless of light. Functional annotation and pathway enrichment analyses of the DEGs showed that nitrate primarily modulates conserved N signaling and metabolism in light, whereas oxidation-reduction processes, pentose-phosphate shunt, starch-, sucrose- and glycerolipid-metabolisms in the dark. Differential N-regulation of these pathways by light could be attributed to the involvement of distinctive sets of transporters, transcription factors, enriched cis-acting motifs in the promoters of DEGs as well as differential modulation of N-responsive transcriptional regulatory networks in light and dark. Sub-clustering of DEGs-associated protein-protein interaction network constructed using experimentally validated interactors revealed that nitrate regulates a molecular complex consisting of nitrite reductase, ferredoxin-NADP reductase and ferredoxin. This complex is associated with flowering time, revealing a meeting point for N-regulation of N-response and N-use efficiency. Together, our results provide novel insights into distinct pathways of N-signaling in light and dark conditions.


Subject(s)
Nitrates/metabolism , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome/genetics , Darkness , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks/genetics , Light , Oxidation-Reduction , Plant Proteins/genetics , Signal Transduction/genetics
5.
Data Brief ; 10: 315-324, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28004021

ABSTRACT

We present data on the evolution of intrinsically disordered regions (IDRs) taking into account the entire human protein kinome. The evolutionary data of the IDRs with respect to the kinase domains (KDs) and kinases as a whole protein (WP) are reported. Further, we have reported its post translational modifications of FAK1 IDRs and their contribution to the cytoskeletal remodeling. We also report the data to build a protein-protein interaction (PPI) network of primary and secondary FAK1-interacting hybrid proteins. Detailed analysis of the data and its effect on FAK1-related functions have been described in "Structural pliability adjacent to the kinase domain highlights contribution of FAK1 IDRs to cytoskeletal remodeling" (Kathiriya et. al., 2016) [1].

6.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 43-54, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27718363

ABSTRACT

Therapeutic protein kinase inhibitors are designed on the basis of kinase structures. Here, we define intrinsically disordered regions (IDRs) in structurally hybrid kinases. We reveal that 65% of kinases have an IDR adjacent to their kinase domain (KD). These IDRs are evolutionarily more conserved than IDRs distant to KDs. Strikingly, 36 kinases have adjacent IDRs extending into their KDs, defining a unique structural and functional subset of the kinome. Functional network analysis of this subset of the kinome uncovered FAK1 as topologically the most connected hub kinase. We identify that KD-flanking IDR of FAK1 is more conserved and undergoes more post-translational modifications than other IDRs. It preferentially interacts with proteins regulating scaffolding and kinase activity, which contribute to cytoskeletal remodeling. In summary, spatially and evolutionarily conserved IDRs in kinases may influence their functions, which can be exploited for targeted therapies in diseases including those that involve aberrant cytoskeletal remodeling.


Subject(s)
Cytoskeleton/metabolism , Focal Adhesion Kinase 1/chemistry , Cytoskeleton/enzymology , Focal Adhesion Kinase 1/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Conformation , Protein Processing, Post-Translational
7.
Plant Mol Biol ; 89(6): 559-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26346778

ABSTRACT

Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1-GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26% of the GPA1-regulated and 30% of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Flavonoids/biosynthesis , Fruit/growth & development , Fruit/metabolism , GTP-Binding Protein alpha Subunits/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Knockout Techniques , Genes, Plant , Mutation , Nitrates/metabolism , Phosphates/metabolism , Plants, Genetically Modified , Receptors, G-Protein-Coupled/genetics , Seeds/growth & development , Seeds/metabolism , Signal Transduction , Stress, Physiological
8.
Mol Biosyst ; 10(11): 2876-88, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25099472

ABSTRACT

Since aberrant cell signaling pathways underlie majority of pathophysiological morbidities, kinase inhibitors are routinely used for pharmacotherapy. However, most kinase inhibitors suffer from adverse off-target effects. Inhibition of one kinase in a pathogenic signaling pathway elicits multiple compensatory feedback signaling loops, reinforcing the pathway rather than inhibiting it, leading to chemoresistance. Thus, development of novel computational strategies providing predictive evidence to inhibit a specific set of kinases to mitigate an aberrant signaling pathway with minimum side-effects is imperative. First, our analyses reveal that many kinases contain intrinsically disordered regions, which may participate in facilitating protein-protein interactions at the kinome level. Second, we employ a kinome-wide approach to identify intrinsic disorder and streamline a methodology that adds to the knowledge of therapeutically targeting kinase cascades to treat diseases. Furthermore, we find that within the kinome network, some kinases with intrinsically disordered regions have a high topological score, likely acting as kinome modulators. Third, using network analysis, we demonstrate that 5 kinases emerge as topologically most significant, forming kinome sub-networks, comprising of other kinases and transcription factors that are known to serve as drivers of disease pathogenesis. To support these findings, we have biologically validated the interplay between kinome modulators SRC and AKT kinases and uncovered their novel function in regulating transcription factors of the SMAD family. Taken together, we identify novel kinome modulators driven by intrinsic disorder, and biologically validate the thesis that therapeutic disruption of the function of kinome modulators engaged in regulatory cross-talk between disparate pathways can lead to reduced oncogenic potential in cancer cells.


Subject(s)
Computational Biology/methods , Intrinsically Disordered Proteins/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Smad Proteins/metabolism , Cell Line , Cell Proliferation/drug effects , Dasatinib , Gene Expression Regulation , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Protein Kinases/chemistry , Pyrimidines/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology
10.
Cell Physiol Biochem ; 33(5): 1239-60, 2014.
Article in English | MEDLINE | ID: mdl-24802001

ABSTRACT

Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.


Subject(s)
Genomics , Lung Diseases/pathology , Lung Diseases/physiopathology , Lung/physiology , Metabolomics , Proteomics , Humans , Lung Diseases/genetics , Lung Diseases/metabolism
11.
J Biol Chem ; 288(41): 29821-35, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23963458

ABSTRACT

Elevated levels of systemic and pulmonary leptin are associated with diseases related to lung injury and lung cancer. However, the role of leptin in lung biology and pathology, including the mechanism of leptin gene expression in the pathogenesis of lung diseases, including lung cancer, remains elusive. Here, using conditional deletion of tumor suppressor gene Pten in the lung epithelium in vivo in transgenic mice and human PTEN-null lung epithelial cells, we identify the leptin-driven feed-forward signaling loop in the lung epithelial cells. Leptin-mediated leptin/leptin-receptor gene expression likely amplifies leptin signaling that may contribute to the pathogenesis and severity of lung diseases, resulting in poor clinical outcomes. Loss of Pten in the lung epithelial cells in vivo activated adipokine signaling and induced leptin synthesis as ascertained by genome-wide mRNA profiling and pathway analysis. Leptin gene transcription was mediated by binding of transcription factors NRF-1 and CCAAT/enhancer-binding protein δ (C/EBP) to the proximal promoter regions and STAT3 to the distal promoter regions as revealed by leptin promoter-mutation, chromatin immunoprecipitation, and gain- and loss-of-function studies in lung epithelial cells. Leptin treatment induced expression of the leptin/leptin receptor in the lung epithelial cells via activation of MEK/ERK, PI3K/AKT/mammalian target of rapamycin (mTOR), and JAK2/STAT3 signaling pathways. Expression of constitutively active MEK-1, AKT, and STAT3 proteins increased expression, and treatment with MEK, PI3K, AKT, and mTOR inhibitors decreased LEP expression, indicating that leptin via MAPK/ERK1/2, PI3K/AKT/mTOR, and JAK2/STAT3 pathways, in turn, further induces its own gene expression. Thus, targeted inhibition of the leptin-mediated feed-forward loop provides a novel rationale for pharmacotherapy of disease associated with lung injury and remodeling, including lung cancer.


Subject(s)
Leptin/genetics , Lung/metabolism , PTEN Phosphohydrolase/genetics , Receptors, Leptin/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , Cell Line, Tumor , Gene Expression/drug effects , Gene Expression Profiling , Humans , Immunohistochemistry , Leptin/metabolism , Leptin/pharmacology , Lung/pathology , Mice , Mice, Knockout , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 1/metabolism , Oligonucleotide Array Sequence Analysis , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , Receptors, Leptin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
12.
Sci Rep ; 3: 2035, 2013.
Article in English | MEDLINE | ID: mdl-23783762

ABSTRACT

IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN's protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of PTEN related pathologies.


Subject(s)
Models, Biological , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/metabolism , Protein Interaction Maps , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Gene Regulatory Networks , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Neoplasms/genetics , Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , Phosphorylation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Sequence Alignment , Signal Transduction
13.
Can J Microbiol ; 56(7): 578-84, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20651857

ABSTRACT

Arthrospira (Spirulina) platensis is widely used as a food supplement and has been an economically important species for centuries. However, the genetic aspect of studies of this particular organism has always been neglected, mainly because of the nonavailability of suitable methods for isolation of nucleic acids and the difficulties faced during further manipulations. Although total RNA has been isolated using commercially available kits, we present a method optimized to obtain DNA-free total RNA of higher yields and higher purity in less time than is required by other methods (<2 h). It involves hot phenol - chloroform - IAA extraction using an aqueous to organic phase ratio of 1:2 followed by lithium chloride precipitation and 70% ethanol wash. This method, optimized for the cyanobacterium Arthrospira (Spirulina) platensis, eliminates the need for DNase treatment and produces high-quality RNA, as validated by bioanalyzer, RT-PCR, and cloning. With the recent release of the Arthrospira genome, the current method will be of great value for carrying out high-throughput studies like microarray and real-time PCR.


Subject(s)
Cyanobacteria/genetics , Genetic Techniques , RNA, Bacterial/isolation & purification , Polymerase Chain Reaction , RNA, Bacterial/genetics
14.
Physiol Mol Biol Plants ; 15(2): 145-50, 2009 Apr.
Article in English | MEDLINE | ID: mdl-23572923

ABSTRACT

Nitrate response at the plant level is mediated by the transcriptional regulation of several hundreds of genes, but no common cis-acting nitrate-responsive elements (NREs) have been identified so far. Earlier, we bioinformatically ruled out the possibility that the previously published [(a/t)7Ag/cTCA] motif could act as NRE on its own (Das et al., 2007, Mol. Genet. Genomics, 278: 519-525). In the present study, we examined other motifs such as Dof and GATA binding elements in homologous as well as heterologous pairwise combinations in the Arabidopsis genome in silico. None of the above three motifs revealed any unique association with nitrate responsive genes or their subsets in any combination, either within their ORFs or 1 kb flanking sequences on either side. Additionally, twelve new, top-scoring candidate motifs that were generated using different online motif samplers were analyzed in silico using a subset of 21 'early' nitrate responsive genes, but did not reveal any specificity of occurence. These results underscore the need to continue the search for novel candidate NREs, as possible sites of intervention to understand/improve nitrate-responsive gene expression and nitrate use efficiency.

15.
Mol Genet Genomics ; 278(5): 519-25, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17680272

ABSTRACT

Nitrate response element (NRE) was originally reported to be comprised of an Ag/cTCA core sequence motif preceded by a 7-bp AT rich region, based on promoter deletion analyses in nitrate and nitrite reductases from Arabidopsis thaliana and birch. In view of hundreds of new nitrate responsive genes discovered recently, we sought to computationally verify whether the above motif indeed qualifies to be the cis-acting NRE for all the responsive genes. We searched for the specific occurrence of at least two copies of the above motif in and around the nitrate responsive genes and elsewhere in the Arabidopsis and rice (Oryza sativa) genomes, with respect to their positional, orientational and strand-specific bias. This is the first comprehensive analysis of NREs for 625 nitrate responsive genes of Arabidopsis and their rice homologs, representing dicots and monocots, respectively. We report that the above motifs are present almost randomly throughout these genomes and do not reveal any specificity or bias towards nitrate responsive genes. This also seems to be true for smaller subsets of nitrate responsive genes in Arabidopsis, such as the 21 early responsive genes, 261 and 90 genes for root-specific and shoot-specific response, respectively, and 25 housekeeping genes. This necessitates a fresh search for candidate sequences that qualify to be NREs in these and other plants.


Subject(s)
Arabidopsis/genetics , Computational Biology/methods , Gene Expression Regulation, Plant , Genome, Plant , Oryza/genetics , Genes, Plant , Genetic Techniques , Models, Biological , Nitrates/chemistry , Nitrite Reductases/metabolism , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Species Specificity , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...