Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 181: 106205, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37339691

ABSTRACT

The present study was undertaken to elucidate mRNA expression pattern of RIG-I and serum cytokines profile alterations in indigenous ducks of Assam, India viz. Pati, Nageswari and Cinahanh in response to natural infections of duck plague virus. Field outbreaks of duck plague virus were attended during the study period for collection of tissue and blood samples. The ducks under study were divided into three distinct groups as per health status i.e. healthy, duck plague infected and recovered. Results from the study revealed that RIG-I gene expression was significantly upregulated in liver, intestine, spleen, brain and PBMC of both infected and recovered ducks. However, fold changes in RIG- I gene expression was lower in recovered ducks as compared to infected ones which indicated continued stimulation of RIG-I gene by the latent viruses. Both serum pro and anti-inflammatory cytokines were elevated in infected ducks as compared to healthy and recovered ducks, indicating activation of inflammatory reactions in the ducks due to virus invasion. The results from the study indicated that innate immune components of the infected ducks were stimulated in order to make an attempt to resist the virus from the infected ducks.


Subject(s)
Ducks , Immunity, Innate , Animals , Leukocytes, Mononuclear/metabolism , Cytokines/genetics , Cytokines/metabolism
2.
Acta Biomater ; 158: 412-422, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36603731

ABSTRACT

Beavers (Castor) stand out among mammals for their unique capacity to fell trees using their large, ever-growing incisors. This routine consumption of resistant fodder induces prodigious wear in the lower incisors, despite this blunting effect the incisors maintain a remarkably sharp cutting edge. Notably, the enamel edges of their incisors show a highly complex two-part microstructure of which the biomechanical import is unknown. Here, using fracture analysis, nanoindentation, and wear testing on North American beaver (C. canadensis) incisors we test the microstructure's possible contribution to maintaining incisal sharpness. Although comparable in hardness, the inner enamel preferentially fails and readily wears at 2.5 times the rate of the outer enamel. The outer microstructure redirects all fractures in parallel, decreasing fracture coalescence. Conversely, the inner microstructure facilitates crack coalescence increasing the wear rate by isolating layers of enamel prisms that readily fragment. Together these two architectures form a microstructurally driven self-sharpening mechanism contained entirely within the thin enamel shell. Our results demonstrate that enamel microstructures exposed at the occlusal surface can markedly influence both enamel crest shape and surface texture in wearing dentitions. The methods introduced here open the door to exploring the biomechanical functionality and evolution of enamel microstructures throughout Mammalia. STATEMENT OF SIGNIFICANCE: Enamel microstructure varies significantly with the diversity of diets, bite forces, and tooth shapes exhibited by mammals. However, minimal micromechanical exploration of microstructures outside of humans, leaves our understanding of biomechanical functions in a nascent stage. Using biologically informed mechanical testing, we demonstrate that the complex two-part microstructure that comprises the cutting edge of beaver incisors facilitates self-sharpening of the enamel edge. This previously unrecognized mechanism provides critical maintenance to the shape of the incisal edge ensuring continued functionality despite extreme wear incurred during feeding. More broadly, we show how the architecture of prisms and the surrounding interprismatic matrix dictate the propagation of fractures through enamel fabrics and how the pairing of enamel fabrics can result in biologically advantageous functions.


Subject(s)
Fractures, Bone , Incisor , Animals , Humans , Trees , Rodentia , Hardness , Dental Enamel
3.
Nanotechnology ; 31(28): 285703, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32244241

ABSTRACT

In this work we apply N+ ion irradiation on vertically aligned carbon nanotube (VACNT) arrays in order to increase the number of connections and joints in the CNT network. The ions energy was 50 keV and fluence 5 × 1017 ions cm-2. The film was 160 µm thick. SEM images revealed the ion irradiation altered the carbon bonding and created a sponge-like, brittle structure at the surface of the film, with the ion irradiation damage region extending ∼4 µm in depth. TEM images showed the brittle structure consists of amorphous carbon forming between nanotubes. The significant enhancement of mechanical properties of the irradiated sample studied by the cyclic nanoindentation with a flat punch indenter was observed. Irradiation on the VACNT film made the structure stiffer, resulted in a higher percentage recovery, and reduced the energy dissipation under compression. The results are encouraging for further studies which will lead to create a class of materials-ion-irradiated VACNT films-which after further research may find application in storage or harvesting energy at the micro/nanoscale.

4.
Sci Rep ; 7(1): 11918, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931874

ABSTRACT

We discuss and demonstrate the application of recently developed spherical nanoindentation stress-strain protocols in characterizing the mechanical behavior of tungsten polycrystalline samples with ion-irradiated surfaces. It is demonstrated that a simple variation of the indenter size (radius) can provide valuable insights into heterogeneous characteristics of the radiation-induced-damage zone. We have also studied the effect of irradiation for the different grain orientations in the same sample.

5.
Sci Rep ; 7(1): 8264, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811523

ABSTRACT

Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

6.
ACS Nano ; 7(10): 8593-604, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24001107

ABSTRACT

Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.

7.
J Mech Behav Biomed Mater ; 13: 102-17, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22842281

ABSTRACT

In this work, we demonstrate the viability of using our recently developed data analysis procedures for spherical nanoindentation in conjunction with Raman spectroscopy for studying lamellar-level correlations between the local composition and local mechanical properties in mouse bone. Our methodologies allow us to convert the raw load-displacement datasets to much more meaningful indentation stress-strain curves that accurately capture the loading and unloading elastic moduli, the indentation yield points, as well as the post-yield characteristics in the tested samples. Using samples of two different inbred mouse strains, A/J and C57BL/6J (B6), we successfully demonstrate the correlations between the mechanical information obtained from spherical nanoindentation measurements to the local composition measured using Raman spectroscopy. In particular, we observe that a higher mineral-to-matrix ratio correlated well with a higher local modulus and yield strength in all samples. Thus, new bone regions exhibited lower moduli and yield strengths compared to more mature bone. The B6 mice were also found to exhibit lower modulus and yield strength values compared to the more mineralized A/J strain.


Subject(s)
Femur , Hardness Tests/methods , Nanotechnology/methods , Animals , Biomechanical Phenomena , Calcification, Physiologic , Femur/physiology , Mice , Species Specificity , Stress, Mechanical
8.
ACS Nano ; 6(3): 2189-97, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22332591

ABSTRACT

We report mechanical behavior and strain rate dependence of recoverability and energy dissipation in vertically aligned carbon nanotube (VACNT) bundles subjected to quasi-static uniaxial compression. We observe three distinct regimes in their stress-strain curves for all explored strain rates from 4 × 10(-2) down to 4 × 10(-4)/sec: (1) a short initial elastic section followed by (2) a sloped plateau with characteristic wavy features corresponding to buckle formation and (3) densification characterized by rapid stress increase. Load-unload cycles reveal a stiffer response and virtually 100% recoverability at faster strain rates of 0.04/sec, while the response is more compliant at slower rates, characterized by permanent localized buckling and significantly reduced recoverability. We propose that it is the kinetics of attractive adhesive interactions between the individual carbon nanotubes within the VACNT matrix that governs morphology evolution and ensuing recoverability. In addition, we report a 6-fold increase in elastic modulus and gradual decrease in recoverability (down to 50%) when VACNT bundles are unloaded from postdensification stage as compared with predensification. Finally, we demonstrate energy dissipation capability, as revealed by hysteresis in load-unload cycles. These findings, together with high thermal and electrical conductivities, position VACNTs in the "unattained-as-of-to-date-space" in the material property landscape.

9.
J Mech Behav Biomed Mater ; 4(1): 34-43, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21094478

ABSTRACT

This study demonstrates a novel approach to characterizing hydrated bone's viscoelastic behavior at lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a higher collagen content or a lower mineral-to-matrix ratio demonstrates a trend towards a larger viscoelastic response. When normalized for anatomical location relative to biological growth patterns in the antero-medial (AM) cortex, bone tissue from B6 femora, known to have a lower mineral-to-matrix ratio, is shown to exhibit a significantly higher viscoelastic response compared to A/J tissue. Newer bone regions with a higher collagen content (closer to the endosteal edge of the AM cortex) showed a trend towards a larger viscoelastic response. Our study demonstrates the feasibility of this technique for analyzing local composition-property relationships in bone. Further, this technique of viscoelastic nanoindentation mapping of the bone surface at these submicron length scales is shown to be highly advantageous in studying subsurface features, such as porosity, of wet hydrated biological specimens, which are difficult to identify using other methods.


Subject(s)
Bone and Bones/physiology , Animals , Biomechanical Phenomena , Bone Density , Collagen/metabolism , Desiccation , Elasticity , In Vitro Techniques , Mice , Mice, Inbred A , Mice, Inbred C57BL , Nanotechnology , Species Specificity , Tissue Embedding , Viscosity , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...