Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 11(2): 316-340, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37921354

ABSTRACT

Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.

2.
RSC Adv ; 10(26): 15523-15529, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-35495445

ABSTRACT

Tris[1,2,4]triazolo[1,3,5]triazine, a new acceptor based on a fused triazole and triazine moiety, is utilized to construct D3-A star-shaped tristriazolotriazine derivatives, named 3,7,11-tris(4-(10H-phenoxazin-10 yl)phenyl)tris([1,2,4]triazolo)[1,3,5]triazine (TTT-PXZ) and 3,7,11-tris(4-(9,9-dimethylacridin-10(9H)yl)phenyl)tris([1,2,4])triazolo[1,3,5]triazine (TTT-DMAC). Both TTT-PXZ and TTT-DMAC emitters feature TADF activities and AIEE properties. Consequently, solution processed OLEDs based on TTT-PXZ green emitters exhibited good performances, with an external quantum efficiency (EQE) of up to 6.2%.

3.
ACS Appl Mater Interfaces ; 11(27): 24598-24608, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246394

ABSTRACT

Conductive hydrogels are attracting increasing attention owing to their great potential for applications in flexible devices. For practical use, these high-water-content materials should not only show good conductivity but also be strong, stretchable, tough, and elastic. Herein, we describe a class of novel conductive tough hydrogels based on strong staggered Fe3+-carboxyl coordinating interactions. They are made from copolymers of acrylamide and N-acryloyl glutamic acid, a bidentate-based comonomer. The design of the staggered structure of Fe3+ and bidentate units is expected to enable energy dissipation and also results in a synergetic effect of two binding sites for fast self-recovery. We demonstrate that the equilibrated hydrogels with a water content of 53 wt % exhibit superior mechanical properties (e.g., highest tensile strength, 12.1 MPa; Young's modulus, 36.1 MPa; work of extension, 42.1 MJ m-3; fracture energy, 10,691 J m-2; compressive strength, 65.1 MPa at 98% strain without a macroscopic fracture) compared to the ion-coordinated hydrogels reported to date, including elasticity at small strain, fast self-recoverability at room temperature (∼25 °C), a high dielectric constant (k = 341-1395 at 100 kHz), and good electrical conductivity (0.0018-0.024 S cm-1). Given their extraordinary overall characteristics, we envision their potential applications in flexible electronic devices.

4.
Langmuir ; 32(36): 9301-12, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27529734

ABSTRACT

A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation.

5.
Chemphyschem ; 17(6): 859-72, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26748430

ABSTRACT

Selenium-annulated perylene tetraesters that stabilize the hexagonal columnar phase have been synthesized and characterized, and their thermal and photophysical behavior has been determined. The mesophase range decreased with an increase in chain length. A comparative account of the structure-property relationships of this series of compounds with respect to parent perylene tetraesters, N- and S-annulated perylene tetraesters, in terms of their thermal, photophysical and electrochemical behavior is provided. The bay-annulation of perylene tetraesters is a good option to modify the thermal and photophysical properties of perylene derivatives and it can provide a new avenue for the synthesis of several technologically important self-assembling perylene derivatives.

6.
Langmuir ; 31(29): 8092-100, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26077109

ABSTRACT

Perylo[1,12-b,c,d] thiophene tetraesters exhibiting wide-range hexagonal columnar phase have been synthesized. These compounds also exhibit good homeotropic alignment in the liquid-crystalline phase which is very important for the device fabrication. These compounds showed sky-blue luminescence in solution under the long-wavelength UV light. With high solubility and high quantum yield these compounds can serve as standards to measure quantum yields of unknown samples. This new class of materials is promising, considering the emissive nature and stabilization of hexagonal columnar mesophase over a wide thermal range and ease of synthesis.

7.
Mol Biosyst ; 11(5): 1389-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25820877

ABSTRACT

The protein kinase C (PKC) family of proteins is an attractive drug target. Dysregulation of PKC-dependent signalling pathways is related to several human diseases like cancer, immunological and other diseases. We approached the problem of altering PKC activities by developing C1 domain-based PKC ligands. In this report γ-hydroxymethyl-γ-butyrolactone (HGL) substituents were investigated in an effort to develop small molecule-based PKC regulators with higher specificity for C1 domain than the endogenous diacylglycerols (DAGs). Extensive analysis of membrane-ligands interaction measurements revealed that the membrane-active compounds strongly interact with the lipid bilayers and the hydrophilic parts of compounds localize at the bilayer/water interface. The pharmacophores like hydroxymethyl, carbonyl groups and acyl-chain length of the compounds are crucial for their interaction with the C1 domain proteins. The potent compounds showed more than 17-fold stronger binding affinity for the C1 domains than DAG under similar experimental conditions. Nonradioactive kinase assay confirmed that these potent compounds have similar or better PKC dependent phosphorylation capabilities than DAG under similar experimental conditions. Hence, our findings reveal that these HGL analogues represent an attractive group of structurally simple C1 domain ligands that can be further structurally altered to improve their potencies.


Subject(s)
4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Protein Kinase C/chemistry , 4-Butyrolactone/metabolism , Enzyme Activation , Humans , Kinetics , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Kinase C/metabolism , Solubility , Structure-Activity Relationship
8.
Soft Matter ; 11(18): 3629-36, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25812168

ABSTRACT

A new class of N-annulated perylene tetraesters and their N-alkylated derivatives has been synthesized. N-Annulated perylene tetraesters stabilize a hexagonal columnar phase over a broad temperature range. The hexagonal columnar phase exhibited by these compounds shows good homeotropic alignment with few defects. Annulation in the bay region of the perylene tetraesters enhanced the width of the mesophase compared with the parent tetraesters. N-Alkylation of these compounds perturbed the self-assembly behaviour and the resulting compounds were non-mesomorphic. A bright green luminescence was visible under long wavelength UV light. These properties suggest that these materials may have promising applications in organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...